Exemple #1
0
 def test_size_strategy(self):
     bag = BaseNNGet(cutoff=5.0, nn_strategy="MinimumDistanceNNAll")
     for i in self.data0_3:
         center_indices, atom_nbr_idx, bond_states, bonds, center_prop = bag.convert(
             i)
         print(center_indices.shape)
         print(atom_nbr_idx.shape)
         print(bond_states.shape)
         print(bonds.shape)
         print(center_prop.shape)
         print("next")
Exemple #2
0
 def test_size_radius(self):
     bag = BaseNNGet(cutoff=5.0, nn_strategy="find_points_in_spheres")
     for i in self.data0_3:
         center_indices, atom_nbr_idx, bond_states, bonds, center_prop = bag.convert(
             i)
         print(center_indices.shape)
         print(atom_nbr_idx.shape)
         print(bond_states.shape)
         print(bonds.shape)
         print(center_prop.shape)
         print("next")
 def test_get1111(self):
     bag = BaseNNGet(nn_strategy="CrystalNN")
     for i in self.data0_checked:
         resultt = bag.convert(i)
         print(resultt)
 def test_get911(self):
     bag = BaseNNGet(nn_strategy="BrunnerNN_real")
     for i in self.data0_checked:
         resultt = bag.convert(i)
         print(resultt)
 def test_get199(self):
     bag = BaseNNGet(cutoff=5.0, nn_strategy="find_points_in_spheres")
     for i in self.data0_checked:
         resultt = bag.convert(i)
         print(resultt)
 def test_get44(self):
     bag = BaseNNGet(nn_strategy="MinimumDistanceNN")
     for i in self.data0_checked:
         resultt = bag.convert(i)
         print(resultt)
 def test_get10(self):
     bag = BaseNNGet(nn_strategy="EconNN")
     for i in self.data0_3:
         resultt = bag.convert(i)
         print(resultt)
 def test_get9(self):
     bag = BaseNNGet(nn_strategy="BrunnerNN_reciprocal")
     for i in self.data0_3:
         resultt = bag.convert(i)
         print(resultt)
 def test_get2(self):
     bag = BaseNNGet(nn_strategy="UserVoronoiNN")
     for i in self.data0_3:
         resultt = bag.convert(i)
         print(resultt)
 def test_get(self):
     bag = BaseNNGet(UserVoronoiNN)
     for i in self.data0_3:
         resultt = bag.convert(i)
         print(resultt)
Exemple #11
0
    def __init__(self,
                 nn_strategy: Union[str,
                                    NearNeighbors] = "find_points_in_spheres",
                 bond_generator: [BaseNNGet, BaseDesGet, str] = None,
                 atom_converter: Converter = None,
                 bond_converter: Converter = None,
                 state_converter: Converter = None,
                 return_bonds: str = "all",
                 cutoff: float = 5.0,
                 **kwargs):
        """
        Parameters
        ----------
        nn_strategy : str
            NearNeighbor strategy.
            For bond_converter ="BaseNNGet": ["BrunnerNN_reciprocal", "BrunnerNN_real", "BrunnerNN_relative",
            "EconNN", "CrystalNN", "MinimumDistanceNNAll", "find_points_in_spheres","UserVoronoiNN"]
            For bond_converter ="BaseDesGet": ["ACSF","BehlerParrinello","EAD","EAMD","SOAP","SO3","SO4_Bispectrum","wACSF"]
            See Also:
            ``BaseNNGet`` :
            :class:`featurebox.featurizers.envir.local_env.MinimumDistanceNNAll`,
            ``BaseDesGet`` :
            :mod:`featurebox.featurizers.descriptors`,
            :class:`featurebox.featurizers.descriptors.SOAP.SOAP`,

        atom_converter: BinaryMap
            atom features converter.
            See Also:
            :class:`featurebox.featurizers.atom.mapper.AtomTableMap` , :class:`featurebox.featurizers.atom.mapper.AtomJsonMap` ,
            :class:`featurebox.featurizers.atom.mapper.AtomPymatgenPropMap`, :class:`featurebox.featurizers.atom.mapper.AtomTableMap`
        bond_converter : Converter
            bond features converter, default=None.
        state_converter : Converter
            state features converter.
            See Also:
            :class:`featurebox.featurizers.state.state_mapper.StructurePymatgenPropMap`
            :mod:`featurebox.featurizers.state.statistics`
            :mod:`featurebox.featurizers.state.union`
        bond_generator : _BaseEnvGet, str
            bond features converter.
            The function of this, is to convert data format to a fixed format.
            "BaseNNGet" or "BaseDesGet" or defined BaseNNGet,BaseDesGet object, default "BaseNNGet".
            1, BaseDesGet or 2, BaseDesGet. or there name.
            if object offered, rather str, the nn_strategy would use the nn_strategy in Converter.
            See Also:
            :class:`featurebox.featurizers.envir.environment.BaseNNGet` ,
            :class:`featurebox.featurizers.envir.environment.BaseDesGet`
        return_bonds: "all","bonds","bond_state"
            which bond property return. default "all".
            ``"bonds_state"`` : bond properties and ``"bonds"`` : atoms number near this center atom.
        cutoff: float
            Whether to use depends on the ``nn_strategy``.
        **kwargs:

        """

        super().__init__(**kwargs)
        self.return_bonds = return_bonds
        self.cutoff = cutoff

        if bond_generator is None:  # default use NNDict
            self.nn_strategy = get_marked_class(nn_strategy, NNDict)
            # there use the universal parameter, custom it please
            self.bond_generator = BaseNNGet(self.nn_strategy,
                                            numerical_tol=1e-8,
                                            pbc=None,
                                            cutoff=self.cutoff)
        elif isinstance(bond_generator, str):  # new add "BaseDesGet"
            self.nn_strategy = get_marked_class(nn_strategy,
                                                env_method[bond_generator])
            # there use the universal parameter, custom it please
            self.bond_generator = env_names[bond_generator](self.nn_strategy,
                                                            self.cutoff,
                                                            numerical_tol=1e-8,
                                                            pbc=None,
                                                            cutoff=self.cutoff)
        else:  # defined BaseDesGet or BaseNNGet
            self.bond_generator = bond_generator
            self.nn_strategy = self.bond_generator.nn_strategy

        self.atom_converter = atom_converter or self._get_dummy_converter()
        self.bond_converter = bond_converter or self._get_dummy_converter()
        self.state_converter = state_converter or self._get_dummy_converter()
        self.graph_data_name = ["atom", "bond", "state", 'atom_nbr_idx']
        self.cutoff = cutoff
Exemple #12
0
class _StructureGraph(BaseFeature):
    """
    Preferential use of _StructureGraphFixedRadius.
    This is a base class for converting converting structure into graphs or model inputs.

    Methods to be implemented are follows:
        convert(self, structure)
            This is to convert a structure into a graph dictionary
    """
    def __init__(self,
                 nn_strategy: Union[str,
                                    NearNeighbors] = "find_points_in_spheres",
                 bond_generator: [BaseNNGet, BaseDesGet, str] = None,
                 atom_converter: Converter = None,
                 bond_converter: Converter = None,
                 state_converter: Converter = None,
                 return_bonds: str = "all",
                 cutoff: float = 5.0,
                 **kwargs):
        """
        Parameters
        ----------
        nn_strategy : str
            NearNeighbor strategy.
            For bond_converter ="BaseNNGet": ["BrunnerNN_reciprocal", "BrunnerNN_real", "BrunnerNN_relative",
            "EconNN", "CrystalNN", "MinimumDistanceNNAll", "find_points_in_spheres","UserVoronoiNN"]
            For bond_converter ="BaseDesGet": ["ACSF","BehlerParrinello","EAD","EAMD","SOAP","SO3","SO4_Bispectrum","wACSF"]
            See Also:
            ``BaseNNGet`` :
            :class:`featurebox.featurizers.envir.local_env.MinimumDistanceNNAll`,
            ``BaseDesGet`` :
            :mod:`featurebox.featurizers.descriptors`,
            :class:`featurebox.featurizers.descriptors.SOAP.SOAP`,

        atom_converter: BinaryMap
            atom features converter.
            See Also:
            :class:`featurebox.featurizers.atom.mapper.AtomTableMap` , :class:`featurebox.featurizers.atom.mapper.AtomJsonMap` ,
            :class:`featurebox.featurizers.atom.mapper.AtomPymatgenPropMap`, :class:`featurebox.featurizers.atom.mapper.AtomTableMap`
        bond_converter : Converter
            bond features converter, default=None.
        state_converter : Converter
            state features converter.
            See Also:
            :class:`featurebox.featurizers.state.state_mapper.StructurePymatgenPropMap`
            :mod:`featurebox.featurizers.state.statistics`
            :mod:`featurebox.featurizers.state.union`
        bond_generator : _BaseEnvGet, str
            bond features converter.
            The function of this, is to convert data format to a fixed format.
            "BaseNNGet" or "BaseDesGet" or defined BaseNNGet,BaseDesGet object, default "BaseNNGet".
            1, BaseDesGet or 2, BaseDesGet. or there name.
            if object offered, rather str, the nn_strategy would use the nn_strategy in Converter.
            See Also:
            :class:`featurebox.featurizers.envir.environment.BaseNNGet` ,
            :class:`featurebox.featurizers.envir.environment.BaseDesGet`
        return_bonds: "all","bonds","bond_state"
            which bond property return. default "all".
            ``"bonds_state"`` : bond properties and ``"bonds"`` : atoms number near this center atom.
        cutoff: float
            Whether to use depends on the ``nn_strategy``.
        **kwargs:

        """

        super().__init__(**kwargs)
        self.return_bonds = return_bonds
        self.cutoff = cutoff

        if bond_generator is None:  # default use NNDict
            self.nn_strategy = get_marked_class(nn_strategy, NNDict)
            # there use the universal parameter, custom it please
            self.bond_generator = BaseNNGet(self.nn_strategy,
                                            numerical_tol=1e-8,
                                            pbc=None,
                                            cutoff=self.cutoff)
        elif isinstance(bond_generator, str):  # new add "BaseDesGet"
            self.nn_strategy = get_marked_class(nn_strategy,
                                                env_method[bond_generator])
            # there use the universal parameter, custom it please
            self.bond_generator = env_names[bond_generator](self.nn_strategy,
                                                            self.cutoff,
                                                            numerical_tol=1e-8,
                                                            pbc=None,
                                                            cutoff=self.cutoff)
        else:  # defined BaseDesGet or BaseNNGet
            self.bond_generator = bond_generator
            self.nn_strategy = self.bond_generator.nn_strategy

        self.atom_converter = atom_converter or self._get_dummy_converter()
        self.bond_converter = bond_converter or self._get_dummy_converter()
        self.state_converter = state_converter or self._get_dummy_converter()
        self.graph_data_name = ["atom", "bond", "state", 'atom_nbr_idx']
        self.cutoff = cutoff

    def __add__(self, other):
        raise TypeError("There is no add.")

    def convert(self,
                structure: Structure,
                state_attributes: List = None) -> Dict:
        """
        Take a pymatgen structure and convert it to a index-type graph representation
        The graph will have node, distance, index1, index2, where node is a vector of Z number
        of atoms in the structure, index1 and index2 mark the atom indices forming the bond and separated by
        distance.

        For state attributes, you can set structure.state = [[xx, xx]] beforehand or the algorithm would
        take default [[0, 0]]

        Parameters
        ----------
        state_attributes: list
            state attributes
        structure: Structure

        Returns
        -------
        ``atom_fea``: np.ndarray, shape (N, atom_fea_len)
            center properties.
        ``nbr_fea``: np.ndarray, shape (N, fill_size, atom_fea_len).
            neighbor_indexes for each center_index.
            `fill_size` default = 5.
        ``state_fea``: np.ndarray, shape (state_fea_len,)
             state feature.
        ``atom_nbr_idx``: np.ndarray, shape (N, fill_size)
            neighbor for each center, fill_size default is 5.
        """
        if state_attributes is not None:
            state_attributes = np.array(state_attributes)
        else:
            state_attributes = np.array([0.0, 0.0], dtype="float32")
        if isinstance(self.state_converter, DummyConverter):
            pass
        else:
            state_attributes = np.concatenate(
                (state_attributes,
                 np.array(self.state_converter.convert(structure)).ravel()))
        center_indices, atom_nbr_idx, bond_states, bonds, center_prop = self.get_bond_fea(
            structure)
        if self.return_bonds == "all":
            bondss = np.concatenate(
                (bonds,
                 bond_states), axis=-1) if bonds is not None else bond_states
        elif self.return_bonds == "bonds":
            if bonds is not None:
                bondss = bonds
            else:
                raise TypeError
        elif self.return_bonds == "bonds_state":
            bondss = bond_states
        else:
            raise NotImplementedError()

        if isinstance(self.atom_converter, DummyConverter):
            atoms_numbers = np.array(
                structure.atomic_numbers)[center_indices].reshape(-1, 1)
            atoms = self.atom_converter.convert(atoms_numbers)
        elif isinstance(self.atom_converter, ConverterCat):
            self.atom_converter.force_concatenate = True  # just accept the data could be concatenate as one array.
            atoms = self.atom_converter.convert(structure)
            atoms = np.array([atoms[round(i)] for i in center_indices])
        else:
            atoms = self.atom_converter.convert(structure)
            atoms = np.array([atoms[round(i)] for i in center_indices])

        bonds = self.bond_converter.convert(bondss)

        # atoms number in the first column.
        if atoms.shape[1] == 1:
            if center_prop.shape[1] > 1:
                atoms = np.concatenate((np.array(atoms), center_prop), axis=1)
            else:
                pass
        elif atoms.shape[1] > 1:
            atoms_numbers = np.array(
                structure.atomic_numbers)[center_indices].reshape(-1, 1)
            if center_prop.shape[1] > 1:
                atoms = np.concatenate(
                    (atoms_numbers, np.array(atoms), center_prop), axis=1)
            else:
                atoms = np.concatenate((atoms_numbers, np.array(atoms)),
                                       axis=1)
        else:
            raise TypeError(
                "Bad Converter for: atoms = self.atom_converter.convert(atoms_numbers)"
            )

        return {
            "atom": atoms,
            "bond": bonds,
            "state": state_attributes,
            "atom_nbr_idx": atom_nbr_idx
        }

    def get_bond_fea(self, structure: Structure):
        """
        Get atom features from structure, may be overwritten.
        """
        # assert hasattr(self.bond_generator, "convert")
        return self.bond_generator.convert(structure)

    def __call__(self, structure: Structure, *args, **kwargs) -> Dict:
        return self.convert(structure, *args, **kwargs)

    @staticmethod
    def _get_dummy_converter() -> DummyConverter:
        return DummyConverter()

    def _transform(self,
                   structures: List[Structure],
                   state_attributes: List = None):
        """

        Parameters
        ----------
        structures:list
            preprocessing of samples need to transform to Graph.
        state_attributes:List
            preprocessing of samples need to add to Graph.

        Returns
        -------
        list of graphs:
            List of dict

        """

        if state_attributes is None:
            state_attributes = [None] * len(structures)
        assert isinstance(structures, Iterable)
        if hasattr(structures, "__len__"):
            assert len(structures) > 0, "Empty input data!"
        iterables = zip(structures, state_attributes)

        if not self.batch_calculate:
            rets = parallelize(self.n_jobs,
                               self._wrapper,
                               iterables,
                               tq=True,
                               respective=True)

            ret, self.support_ = zip(*rets)

        else:
            rets = batch_parallelize(self.n_jobs,
                                     self._wrapper,
                                     iterables,
                                     respective=True,
                                     tq=True,
                                     batch_size=self.batch_size)

            ret, self.support_ = zip(*rets)
        return ret

    def get_flat_data(self, graphs: List[Dict]) -> tuple:
        """
        Expand the graph dictionary to form a list of features and targets tensors.
        This is useful when the model is trained on assembled graphs on the fly.
        Aim to get input for GraphGenerator.

        Parameters
        ----------
        graphs: list of dict
            list of graph dictionary for each structure

        Returns
        -------
            tuple(node_features, edges_features, stats_values, atom_nbr_idx , ***)
        """
        output = []  # Will be a list of arrays

        # Convert the graphs to matrices
        for n, fi in enumerate(self.graph_data_name):
            output.append([
                np.array(gi[fi]) if isinstance(gi, dict) else np.array(gi[n])
                for gi in graphs
            ])

        return tuple(output)

    def transform(self,
                  structures: List[Structure],
                  state_attributes: List = None):
        """

        Parameters
        ----------
        structures:list
            preprocessing of samples need to transform to Graph.
        state_attributes
            preprocessing of samples need to add to Graph.

        Returns
        -------
        ``atom_fea``: list of np.ndarray, shape (N, atom_fea_len)
            center properties.
        ``nbr_fea``: list of np.ndarray, shape (N, fill_size, atom_fea_len).
            neighbor_indexes for each center_index.
            `fill_size` default = 5.
        ``state_fea``: list of np.ndarray, shape (state_fea_len,)
             state feature.
        ``atom_nbr_idx``: list of np.ndarray, shape (N, fill_size)
            neighbor for each center, fill_size default is 5.
        """
        return self.get_flat_data(self._transform(structures,
                                                  state_attributes))