cov = cov.set_axis(X_frame_abbr, axis='index', inplace=False) cov = cov.set_axis(X_frame_abbr, axis='columns', inplace=False) fig = plt.figure() fig.add_subplot(111) sns.heatmap(cov, vmin=-1, vmax=1, cmap="bwr", linewidths=0.3, xticklabels=True, yticklabels=True, square=True, annot=True, annot_kws={'size': 3}) plt.show() corr_plot(corr.cov_shrink, X_frame_abbr, left_down="fill", right_top="pie", threshold_right=0, front_raito=0.5) list_name, list_abbr = name_to_name(X_frame_name, X_frame_abbr, search=corr.list_count, search_which=0, return_which=(1, 2), two_layer=True) store.to_csv(cov, "cov") store.to_txt(list_name, "list_name") store.to_txt(list_abbr, "list_abbr") # 2 select = ['volume', 'destiny', 'lattice constants a', 'lattice constants c', 'radii covalent', 'radii ionic(shannon)', 'distance core electron(schubert)', 'latent heat of fusion', 'energy cohesive brewer', 'total energy', 'charge nuclear effective(slater)', 'valence electron number', 'electronegativity(martynov&batsanov)', 'volume atomic(villars,daams)'] # human select select_index, select_abbr = name_to_name(X_frame_name, X_frame_abbr, search=select, search_which=1, return_which=(0, 2), two_layer=False) cov_select = corr.cov_shrink[select_index, :][:, select_index]
param_grid3 = [{'n_estimators': [100, 200], 'learning_rate': [0.1, 0.05]}] # 2 model ref = RFECV(me2, cv=3) x_ = ref.fit_transform(x, y) gd = GridSearchCV(me2, cv=3, param_grid=param_grid2, scoring="r2", n_jobs=1) gd.fit(x_, y) score = gd.best_score_ # 1,3 model # gd = GridSearchCV(me1, cv=3, param_grid=param_grid1, scoring="r2", n_jobs=1) # gd.fit(x,y) # es = gd.best_estimator_ # sf = SelectFromModel(es, threshold=None, prefit=False, # norm_order=1, max_features=None) # sf.fit(x,y) # feature = sf.get_support() # # gd.fit(x[:,feature],y) # score = gd.best_score_ # 其他模型 # 穷举等... # 导出 # pd.to_pickle(gd,r'C:\Users\Administrator\Desktop\skk\gd_model') # pd.read_pickle(r'C:\Users\Administrator\Desktop\skk\gd_model') store.to_pkl_sk(gd) store.to_csv(x) store.to_txt(score)