Exemple #1
0
def predict(img):
    #predict the class of the input image
    execute_net(features.get_HoG(img))  #Execute net base don the input image
    pos = np.argmax(receptors[depth])  #Find the class having max. weight
    print receptors[depth], dataset.folders[
        pos]  #Print the folder name corresponding to the class
    return dataset.folder[pos]
Exemple #2
0
def read_from_folder(path, val):
    imgs = []
    for f in os.listdir(path):
        ext = os.path.splitext(f)[1]
        if ext.lower() not in valid_images:
            continue
        filename = path+'/'+f
        img = cv2.imread(filename,0)
        feat = features.get_HoG(img)
        imgs.append([feat, val])
    return imgs
def read_from_folder(path, val):
    #Read all the images in the folder
    imgs = []
    for f in os.listdir(path):              #list all the files in the folder
        ext = os.path.splitext(f)[1]        #get the file extension
        if ext.lower() not in valid_images: #check if the extension is valid for the image
            continue
        filename = path+'/'+f               #create the path of the image
        img = cv2.imread(filename,0)        #read the image
        
        if img == None:                     #Display error if image has nothing
            print 'Error! Blank Image : ' + filename
            continue
        
        feat = features.get_HoG(img)        #Get the features for the image
        imgs.append([feat, val])            #append features with the categorical output
    return imgs
Exemple #4
0
def read_from_folder(path, val):
    #Read all the images in the folder
    imgs = []
    for f in os.listdir(path):  #list all the files in the folder
        ext = os.path.splitext(f)[1]  #get the file extension
        if ext.lower(
        ) not in valid_images:  #check if the extension is valid for the image
            continue
        filename = path + '/' + f  #create the path of the image
        img = cv2.imread(filename, 0)  #read the image

        if img == None:  #Display error if image has nothing
            print 'Error! Blank Image : ' + filename
            continue

        feat = features.get_HoG(img)  #Get the features for the image
        imgs.append([feat, val])  #append features with the categorical output
    return imgs
def convert2requiredFormat(data_c):
    data = []
    imgs = data_c.get('data')
    for i in range(len(imgs)):
        val = data_c.get('fine_labels')[i]
        img = data_c.get('data')[i]
        img = img.reshape((3,32,32))
        dst = np.zeros((32,32))        
        for x in range(32):
            for y in range(32):
                dst[x][y] = (img[0][x][y]+img[1][x][y]+img[2][x][y])/3
        
        feat = features.get_HoG(dst)
        
        if val == 85:            
            data.append([feat, [0,1]])
        else:
            data.append([feat, [1,0]])
    return data
Exemple #6
0
def convert2requiredFormat(data_c):
    data = []
    imgs = data_c.get('data')
    for i in range(len(imgs)):
        val = data_c.get('fine_labels')[i]
        img = data_c.get('data')[i]
        img = img.reshape((3, 32, 32))
        dst = np.zeros((32, 32))
        for x in range(32):
            for y in range(32):
                dst[x][y] = (img[0][x][y] + img[1][x][y] + img[2][x][y]) / 3

        feat = features.get_HoG(dst)

        if val == 85:
            data.append([feat, [0, 1]])
        else:
            data.append([feat, [1, 0]])
    return data
def execute(inputs):
    global receptors
    
    if inputs.size > 10:
        
        start = time.clock()
        receptors[0] = features.get_HoG(inputs)             #compute the feature vector of the input image
        print 'HoG time   :   ', (time.clock()-start)
        
        start = time.clock()
        for index in xrange(0,depth):                       #Execute Neural Network
            receptors[index+1] = act.activate(synapses[index].dot(receptors[index]) + bias[index+1], False, act_fn[index+1])        
        print 'NNet time   :   ', (time.clock()-start)
        
        
        pos = np.argmax(receptors[depth])                   #Get the position of the maximum value output
        if pos == 1:            
            if category[pos] > 0.9:                         #return 'Tracked' only if more than 90% sure
                return category[pos]
    return category[0]
Exemple #8
0
def execute(inputs):
    global receptors

    if inputs.size > 10:

        start = time.clock()
        receptors[0] = features.get_HoG(
            inputs)  #compute the feature vector of the input image
        print 'HoG time   :   ', (time.clock() - start)

        start = time.clock()
        for index in xrange(0, depth):  #Execute Neural Network
            receptors[index + 1] = act.activate(
                synapses[index].dot(receptors[index]) + bias[index + 1], False,
                act_fn[index + 1])
        print 'NNet time   :   ', (time.clock() - start)

        pos = np.argmax(
            receptors[depth])  #Get the position of the maximum value output
        if pos == 1:
            if category[
                    pos] > 0.9:  #return 'Tracked' only if more than 90% sure
                return category[pos]
    return category[0]
def predict(img):    
    #predict the class of the input image
    execute_net(features.get_HoG(img))              #Execute net base don the input image
    pos = np.argmax(receptors[depth])               #Find the class having max. weight
    print receptors[depth], dataset.folders[pos]    #Print the folder name corresponding to the class
    return dataset.folder[pos]
def predict(img):    
    execute_net(features.get_HoG(img))
    print receptors[depth]
    pos = np.argmax(receptors[depth])
    print dataset.folders[pos]