Exemple #1
0
def test_handles_datetime_format():
    # check if we load according to the format string
    # pass in an ambigious date
    datetime_format = "%d-%m-%Y"
    actual = pd.Timestamp('Jan 2, 2011')
    time_strs = [actual.strftime(datetime_format)] * 3
    df = pd.DataFrame({
        'id': [0, 1, 2],
        'time_format': time_strs,
        'time_no_format': time_strs
    })
    vtypes = {
        'id': variable_types.Categorical,
        'time_format': (variable_types.Datetime, {
            "format": datetime_format
        }),
        'time_no_format': variable_types.Datetime
    }

    entityset = EntitySet(id='test')
    entityset._import_from_dataframe(entity_id='test_entity',
                                     index='id',
                                     variable_types=vtypes,
                                     dataframe=df)

    col_format = entityset['test_entity'].df['time_format']
    col_no_format = entityset['test_entity'].df['time_no_format']
    # without formatting pandas gets it wrong
    assert (col_no_format != actual).all()

    # with formatting we correctly get jan2
    assert (col_format == actual).all()
Exemple #2
0
def test_converts_datetime():
    # string converts to datetime correctly
    # This test fails without defining vtypes.  Entityset
    # infers time column should be numeric type
    times = pd.date_range('1/1/2011', periods=3, freq='H')
    time_strs = times.strftime('%Y-%m-%d')
    df = pd.DataFrame({'id': [0, 1, 2], 'time': time_strs})
    vtypes = {'id': variable_types.Categorical,
              'time': variable_types.Datetime}

    entityset = EntitySet(id='test')
    entityset._import_from_dataframe(entity_id='test_entity', index='id',
                                     time_index="time", variable_types=vtypes,
                                     dataframe=df)
    pd_col = entityset['test_entity'].df['time']
    # assert type(entityset['test_entity']['time']) == variable_types.Datetime
    assert type(pd_col[0]) == pd.Timestamp
Exemple #3
0
    def test_converts_datetime(self):
        # string converts to datetime correctly
        # This test fails without defining vtypes.  Entityset
        # infers time column should be numeric type
        times = pd.date_range('1/1/2011', periods=3, freq='H')
        time_strs = times.strftime('%Y-%m-%d')
        df = pd.DataFrame({'id': [0, 1, 2], 'time': time_strs})
        vtypes = {'id': variable_types.Categorical,
                  'time': variable_types.Datetime}

        entityset = EntitySet(id='test')
        entityset._import_from_dataframe(entity_id='test_entity', index='id',
                                         time_index="time", variable_types=vtypes,
                                         dataframe=df)
        pd_col = entityset.get_column_data('test_entity', 'time')
        # assert type(es['test_entity']['time']) == variable_types.Datetime
        assert type(pd_col[0]) == pd.Timestamp
Exemple #4
0
def test_handles_datetime_format():
    # check if we load according to the format string
    # pass in an ambigious date
    datetime_format = "%d-%m-%Y"
    actual = pd.Timestamp('Jan 2, 2011')
    time_strs = [actual.strftime(datetime_format)] * 3
    df = pd.DataFrame(
        {'id': [0, 1, 2], 'time_format': time_strs, 'time_no_format': time_strs})
    vtypes = {'id': variable_types.Categorical,
              'time_format': (variable_types.Datetime, {"format": datetime_format}),
              'time_no_format': variable_types.Datetime}

    entityset = EntitySet(id='test')
    entityset._import_from_dataframe(entity_id='test_entity', index='id',
                                     variable_types=vtypes, dataframe=df)

    col_format = entityset['test_entity'].df['time_format']
    col_no_format = entityset['test_entity'].df['time_no_format']
    # without formatting pandas gets it wrong
    assert (col_no_format != actual).all()

    # with formatting we correctly get jan2
    assert (col_format == actual).all()