def test_override_boolean(es): count = ft.Feature(es['log']['id'], parent_entity=es['sessions'], primitive=Count) count_lo = ft.Feature(count, primitive=GreaterThanScalar(1)) count_hi = ft.Feature(count, primitive=LessThanScalar(10)) to_test = [[True, True, True], [True, True, False], [False, False, True]] features = [] features.append(count_lo.OR(count_hi)) features.append(count_lo.AND(count_hi)) features.append(~(count_lo.AND(count_hi))) df = ft.calculate_feature_matrix(entityset=es, features=features, instance_ids=[0, 1, 2]) for i, test in enumerate(to_test): v = df[features[i].get_name()].values.tolist() assert v == test
def test_override_boolean(es): count = ft.Feature(es["log"].ww["id"], parent_dataframe_name="sessions", primitive=Count) count_lo = ft.Feature(count, primitive=GreaterThanScalar(1)) count_hi = ft.Feature(count, primitive=LessThanScalar(10)) to_test = [[True, True, True], [True, True, False], [False, False, True]] features = [] features.append(count_lo.OR(count_hi)) features.append(count_lo.AND(count_hi)) features.append(~(count_lo.AND(count_hi))) df = ft.calculate_feature_matrix(entityset=es, features=features, instance_ids=[0, 1, 2]) df = to_pandas(df, index="id", sort_index=True) for i, test in enumerate(to_test): v = df[features[i].get_name()].tolist() assert v == test