Exemple #1
0
 def apply(self, text):
     tokens = [token.text for token in text]
     scores = self.model(tokens)
     events = []
     for i, w in enumerate(text):
         if type(scores[i]) == float:
             values = [Value(text, self, {self.name: scores[i]})]
         elif type(scores[i]) == dict:
             values = []
             for k in scores[i].keys():
                 values.append(
                     Value(text, self, {self.name + '_' + k: scores[i][k]}))
         # parse dictionary into list if getting dict back
         event = Event(onset=w.onset, duration=w.duration, values=values)
         events.append(event)
     return events
Exemple #2
0
    def apply(self, stim):
        data = self._stft(stim)
        events = []
        time_bins = np.arange(0., stim.duration - self.frame_size,
                              self.hop_size)

        if isinstance(self.freq_bins, int):
            bins = []
            bin_size = data.shape[1] / self.freq_bins
            for i in range(self.freq_bins):
                bins.append((i * bin_size, (i + 1) * bin_size))
            self.freq_bins = bins

        for i, tb in enumerate(time_bins):
            ev = Event(onset=tb, duration=self.frame_size)
            value_data = {}
            for fb in self.freq_bins:
                label = '%d_%d' % fb
                start, stop = fb
                val = data[i, start:stop].mean()
                if np.isinf(val):
                    val = 0.
                value_data[label] = val
            ev.add_value(Value(stim, self, value_data))
            events.append(ev)
        return events
Exemple #3
0
    def apply(self, stim, show=False):

        events = []
        for i, f in enumerate(stim):

            img = f.data
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

            if i == 0:
                last_frame = img
                total_flow = 0

            flow = cv2.calcOpticalFlowFarneback(
                last_frame, img, 0.5, 3, 15, 3, 5, 1.2, 0)
            flow = np.sqrt((flow ** 2).sum(2))

            if show:
                cv2.imshow('frame', flow.astype('int8'))
                cv2.waitKey(1)

            last_frame = img
            total_flow = flow.sum()

            value = Value(stim, self, {'total_flow': total_flow})
            event = Event(onset=f.onset, duration=f.duration, values=[value])
            events.append(event)

        return events
Exemple #4
0
    def apply(self, stim):

        events = []
        time_bins = np.arange(0., stim.duration, 1.)
        for i, tb in enumerate(time_bins):
            ev = Event(onset=tb, duration=1000)
            ev.add_value(Value(stim, self, {'second': i}))
        return events
Exemple #5
0
    def apply(self, stim):
        # Taken from
        # http://stackoverflow.com/questions/7765810/is-there-a-way-to-detect-if-an-image-is-blurry?lq=1
        data = stim.data
        gray_image = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)

        sharpness = np.max(cv2.convertScaleAbs(cv2.Laplacian(gray_image, 3))) / 255.0
        return Value(stim, self, {'sharpness': sharpness})
Exemple #6
0
    def apply(self, img):
        data = img.data
        temp_file = tempfile.mktemp() + '.png'
        imsave(temp_file, data)
        tags = self.tagger.tag_images(open(temp_file, 'rb'),
                                      select_classes=self.select_classes)
        os.remove(temp_file)

        return Value(img, self, {'tags': tags})
Exemple #7
0
 def test_dummy_code_timeline(self):
     data = [{'A': 12.0, 'B': 'abc'}, { 'A': 7, 'B': 'def'}, { 'C': 40 }]
     events = [Event(values=[Value(None, None, x)], duration=1) for x in data]
     tl = Timeline(events=events, period=1)
     self.assertEqual(tl.to_df().shape, (5, 4))
     tl_dummy = tl.dummy_code()
     self.assertEqual(tl_dummy.to_df().shape, (7, 4))
     tl = Timeline(events=events, period=1)
     tl_dummy = tl.dummy_code(string_only=False)
     self.assertEqual(tl_dummy.to_df().shape, (9, 4))
Exemple #8
0
    def apply(self, stim):
        # pySaliencyMap from https://github.com/akisato-/pySaliencyMap
        data = stim.data

        # Initialize variables
        h, w, c = stim.data.shape
        sm = pySaliencyMap.pySaliencyMap(h, w)

        # Compute saliency maps and store full maps as derivatives
        stim.derivatives = dict()
        stim.derivatives['saliency_map'] = sm.SMGetSM(stim.data)
        stim.derivatives['binarized_map'] = sm.SMGetBinarizedSM(stim.data) #thresholding done using Otsu

        # Compute summary statistics
        output = {}
        output['max_saliency'] = np.max(stim.derivatives['saliency_map'])
        output['max_y'], output['max_x'] = [list(i)[0] for i in np.where(stim.derivatives['saliency_map']==output['max_saliency'])]
        output['frac_high_saliency'] = np.sum(stim.derivatives['binarized_map']/255.0)/(h * w)

        return Value(stim, self, output)
Exemple #9
0
    def apply(self, stim):
        amps = stim.data
        sampling_rate = stim.sampling_rate
        elements = stim.transcription.elements
        events = []
        for i, el in enumerate(elements):
            onset = sampling_rate * el.onset
            duration = sampling_rate * el.duration

            r_onset = np.round(onset).astype(int)
            r_offset = np.round(onset + duration).astype(int)
            if not r_offset <= amps.shape[0]:
                raise Exception('Block ends after data.')

            mean_amplitude = np.mean(amps[r_onset:r_offset])
            amplitude_data = {'mean_amplitude': mean_amplitude}
            ev = Event(onset=onset, duration=duration)
            ev.add_value(Value(stim, self, amplitude_data))
            events.append(ev)
        return events
Exemple #10
0
 def apply(self, audio):
     with sr.AudioFile(audio.filename) as source:
         clip = self.recognizer.record(source)
     text = self.recognizer.recognize_wit(clip, self.api_key)
     return Value(text, self, {'text': text})
Exemple #11
0
 def extract(self, extractors):
     vals = {}
     for e in extractors:
         vals[e.name] = e.apply(self)
     return Value(self, e, vals)
Exemple #12
0
 def apply(self, img):
     data = img.data
     avg_color = np.var(data, 2).mean()
     return Value(img, self, {'avg_color': avg_color})
Exemple #13
0
    def apply(self, img):
        data = img.data
        avg_brightness = np.amax(data, 2).mean() / 255.0

        return Value(img, self, {'avg_brightness': avg_brightness})
Exemple #14
0
 def apply(self, stim):
     return Value(stim, self, {'constant': 1})
Exemple #15
0
 def apply(self, stim):
     data = stim.data
     avg_color = np.var(data, 2).mean()
     return Value(stim, self, {'avg_color': avg_color})
Exemple #16
0
    def apply(self, stim):
        data = stim.data
        avg_brightness = np.amax(data, 2).mean() / 255.0

        return Value(stim, self, {'avg_brightness': avg_brightness})