def test_initializer(self): initializer = Initializer() data_shape = 10 init_param_obj = InitParam(init_method=consts.RANDOM_NORMAL, init_const=20, fit_intercept=False ) model = initializer.init_model(model_shape=data_shape, init_params=init_param_obj) model_shape = np.array(model).shape self.assertTrue(model_shape == (10,))
def __init__(self): super(BaseLinearModel, self).__init__() # attribute: self.n_iter_ = 0 self.classes_ = None self.feature_shape = None self.gradient_operator = None self.initializer = Initializer() self.transfer_variable = None self.loss_history = [] self.is_converged = False self.header = None self.model_name = 'toSet' self.model_param_name = 'toSet' self.model_meta_name = 'toSet' self.role = '' self.mode = '' self.schema = {} self.cipher_operator = None self.model_weights = None self.validation_freqs = None self.need_one_vs_rest = False self.need_call_back_loss = True self.init_param_obj = None self.validation_strategy = None
def __init__(self): super(BaseFactorizationMachine, self).__init__() # attribute: self.initializer = Initializer() self.model_name = 'FactorizationMachine' self.model_param_name = 'FactorizationMachineParam' self.model_meta_name = 'FactorizationMachineMeta' self.n_iter_ = 0 self.classes_ = None self.feature_shape = None self.gradient_operator = None self.transfer_variable = None self.loss_history = [] self.is_converged = False self.header = None self.role = '' self.mode = '' self.schema = {} self.cipher_operator = None self.model_weights = None self.validation_freqs = None # one_ve_rest parameter self.in_one_vs_rest = False self.need_one_vs_rest = None self.one_vs_rest_classes = [] self.one_vs_rest_obj = None
def __init__(self): super(BaseLogisticRegression, self).__init__() # attribute: self.initializer = Initializer() self.model_name = 'LogisticRegression' self.model_param_name = 'LogisticRegressionParam' self.model_meta_name = 'LogisticRegressionMeta' # one_ve_rest parameter self.need_one_vs_rest = None self.one_vs_rest_classes = [] self.one_vs_rest_obj = None
def __init__(self): super(BaseLinearRegression, self).__init__() self.model_param = LinearParam() # attribute: self.n_iter_ = 0 self.feature_shape = None self.gradient_operator = None self.initializer = Initializer() self.transfer_variable = None self.loss_history = [] self.is_converged = False self.header = None self.model_name = 'LinearRegression' self.model_param_name = 'LinearRegressionParam' self.model_meta_name = 'LinearRegressionMeta' self.role = '' self.mode = '' self.schema = {} self.cipher_operator = PaillierEncrypt()