json_dir = "../json/output"
model_dir = "models"

for f in os.listdir(json_dir):
    os.remove(os.path.join(json_dir, f))

# 2. Run Openpose Webcam Mode
handler = subprocess.Popen([
    openpose_demo_path, "--disable_blending=false", "--camera=" +
    str(camera_offset), "--net_resolution=128x128", "--write_json=" + json_dir,
    "--model_folder=" + model_dir, "--number_people_max=1"
],
                           shell=False)

print("Start 3 push-up")
tys = ["elbow", "arm", "shoulder"]
for ty in tys:
    fds = FeedbackSystem()
    fds.load("demo_front_" + ty + "_model", "front")

    # 3. Give feedback
    #try:
    j = JsonParser()
    video = j.parse(None, 60, json_dir, "front", None)
    result = fds.feedback_kmeans(video, ty)
    print(result)
    handler.terminate()
    #except:
    #    print("Exception Occured")
    #    handler.terminate()
"""
This code demonstrates simple learning and feedback process for wrong push-up posture.  
For the intermediate presentations use only. 
"""
from json_parser import JsonParser
from feedback import FeedbackSystem
from pathlib import Path
import os

# 1. learning FeedbackSystem with pre-labelled push-up data
fds = FeedbackSystem()
j = JsonParser()

#label format [partial range or not, elbow flare or not, wide or not]
videos_with_label = [("r0e0ns1", [0, 0, 0]), ("r0e0ns2", [0, 0, 0]),
                     ("r0e0ns3", [0, 0, 0]), ("r0e0ws1", [0, 0, 1]),
                     ("r0e0ws2", [0, 0, 1]), ("r0e0ws3", [0, 0, 1]),
                     ("r0e1ns1", [0, 1, 0]), ("r0e1ns2", [0, 1, 0]),
                     ("r0e1ws1", [0, 1, 1]), ("r0e1ws2", [0, 1, 1]),
                     ("r0e1ws3", [0, 1, 1]), ("r1e0ns1", [1, 0, 0]),
                     ("r1e0ns2", [1, 0, 0]), ("r1e0ns3", [1, 0, 0]),
                     ("r1e0ns4", [1, 0, 0]), ("r1e0ws1", [1, 0, 1]),
                     ("r1e0ws2", [1, 0, 1]), ("r1e0ws3", [1, 0, 1]),
                     ("r1e1ns1", [1, 1, 0]), ("r1e1ns2", [1, 1, 0]),
                     ("r1e1ns3", [1, 1, 0]), ("r1e1ws1", [1, 1, 1]),
                     ("r1e1ws2", [1, 1, 1]), ("r1e1ws3", [1, 1, 1])]

tys = ["elbow", "shoulder", "arm"]
for ty in tys:
    for video_with_label in videos_with_label:
        path = Path("../json/" + video_with_label[0])
Exemple #3
0
from json_parser import JsonParser
from video_processor import VideoProcessor
from feedback import FeedbackSystem

j = JsonParser()
video = j.parse("flare3", 200, "json/learn", "front", [0,0])
vp = VideoProcessor(video)
angles = vp.compute_left_elbow_angle(0.4)
fs = FeedbackSystem()
out = fs.min_max(angles)
print(out)

Exemple #4
0
"""
This code demonstrates simple learning and feedback process for wrong push-up posture.  
For the intermediate presentations use only. 
"""
from json_parser import JsonParser
from feedback import FeedbackSystem
from pathlib import Path

# 1. learning FeedbackSystem with pre-labelled push-up data
fds = FeedbackSystem()
j = JsonParser()
#front_videos_with_label = [("correct1", 1), ("correct2", 1), ("correct3", 0), ("flare1", 1), ("flare2", 0), ("flare3", 0)]
videos_with_label = [("incorrect_squat", 1), ("correct_squat", 0)]

for video_with_label in videos_with_label:
    path = Path("../json/" + video_with_label[0])
    print(str(path))
    video = j.parse(video_with_label[0], 200, path, "squat",
                    video_with_label[1])
    fds.learn(video, threshold=0.5)

fds.save("demo_squat_model", "squat")
    def start_feedback(self): 
        #time.sleep(5)
        #collect data 
        
        
        print("feedback start")
        print("GET READY")
        time.sleep(3)
        print("START")

        #for i in reversed(range(self.sub2_layout.count())):
        #    self.sub2_layout.itemAt(i).widget().setParent(None)
 
        #go_img = QLabel("GO")
        #go_img.setPixmap(QPixmap("../pictures/go.JPG").scaledToWidth(320))
        #go_img.setAlignment(Qt.AlignCenter)
        #self.sub2_layout.addWidget(go_img)




        start_point = len(os.listdir(json_dir))
        j = JsonParser(start_point=start_point)
   
        # incremental try
        frame_no_list = [i*10 for i in range(4,10)]
        err = 0
        
        tys = ["elbow", "arm", "shoulder"]
        result_dict = {} 
        

        for frame_no in frame_no_list:  
            print(str(frame_no) + " frame test")
            video = j.parse(None, frame_no , json_dir, "front", None)
            result_dict = {}
            err = 0 
            for ty in tys:
                print("doing " + ty)
                fds = FeedbackSystem()
                fds.load("demo_front_" + ty + "_model", "front")
                result, div_zero = fds.feedback_kmeans(video, ty, threshold=0.3)
                if div_zero:
                    err = 1
                else:
                    result_dict[ty] = result 

            if err is 0:
                break
            
        if err is 1:
            self.stop_op_screen("Posture is not detected. Please adjust webcam position") 
            return
         
        fdm = FeedbackMsg(result_dict)
        msg = fdm.get_feedback_msg()
        #self.op_handler.terminate()


        # now print out feedback msg
        #self.stop_op_screen("Result")
              
        need_cor = msg[0]
        cor_msg = msg[1:]

        #top_layout = QVBoxLayout() 
        #bottom_layout = QVBoxLayout()

        """ 
        for m in cor_msg:  
            op_tmp = QLabel(m)
            op_tmp.setAlignment(Qt.AlignCenter)
            self.op_layout.addWidget(op_tmp)
        """
        
        for i in reversed(range(self.sub2_layout.count())):
            self.sub2_layout.itemAt(i).widget().setParent(None)
       
        if need_cor:
            bad_img = QLabel()
            bad_img.setPixmap(QPixmap("../pictures/bad.JPG").scaledToWidth(260))
            bad_img.setAlignment(Qt.AlignCenter)
            self.sub2_layout.addWidget(bad_img)
        else:
            nice_img = QLabel()
            nice_img.setPixmap(QPixmap("../pictures/nice.JPG").scaledToWidth(260))
            nice_img.setAlignment(Qt.AlignCenter)
            self.sub2_layout.addWidget(nice_img)

        feedback_msg = ""
        for m in cor_msg:  
            feedback_msg += m + "\n"

        op_tmp = QLabel(feedback_msg)
        op_tmp.setAlignment(Qt.AlignCenter)
        op_tmp.setSizePolicy(QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed))
        self.sub2_layout.addWidget(op_tmp)

        """
from feedback import FeedbackSystem



#label format [partial range, elbow flare, wide]
pr = 0
ef = 1
w = 0


min_dic = {}
max_dic = {}

min_dic["arm"]=70
max_dic["arm"]=76
min_dic["elbow"]=5
max_dic["elbow"]=180
min_dic["shoulder"]=94
max_dic["shoulder"]=120



tys = ["arm", "elbow", "shoulder"]

for ty in tys:
    fds = FeedbackSystem()
    fds.load("demo_front_" + ty + "_model", "front")
    fds.manual_learn([min_dic[ty], max_dic[ty]], [pr,ef,w])
    fds.save("demo_front_" + ty + "_model", "front")