Exemple #1
0
def dc_plots(
    c: Config,
    num_loads: int = 100,
    num_subplot_ils: int = 12,
    fem_runner: Optional[FEMRunner] = None,
):
    """Make plots of the displacement control fem.

    Args:
        c: Config, global configuration object.
        num_loads: int, the number of loading positions or influence lines.
        num_subplot_ils: int, the number of influence lines on the subplots.
        fem_runner: Optional[FEMRunner], FEM program to run simulations with,
            default is OpenSees.

    """
    num_piers = len(c.bridge.supports)

    if fem_runner is None:
        fem_runner = OSRunner(c)

    pload_z_fracs = [None]  # A single wheel track value ignored for 2D.

    # If a 3D FEM then generate DC plots for each wheel track.
    if c.bridge.dimensions == Dimensions.D3:
        pload_z_fracs = wheel_tracks(c)

    for pload_z_frac in pload_z_fracs:
        for response_type in fem_runner.supported_response_types(c.bridge):

            # Make the influence line imshow matrix.
            dc_matrix = DCMatrix.load(
                c=c, response_type=response_type, fem_runner=OSRunner(c)
            )

            filename = (
                f"subplots-{dc_matrix.fem_runner.name}"
                + f"-{response_type.name()}"
                + f"-numexpts-{dc_matrix.num_expts}"
            )

            matrix_subplots(
                c=c,
                resp_matrix=dc_matrix,
                num_x=num_x,
                plot_func=plot_dc,
                save=c.get_image_path("dcs", f"subplots-{filename}"),
            )
    c.il_num_loads = original_num_ils
Exemple #2
0
def traffic(c: Config):
    """Make animations of different traffic scenarios."""

    max_time, time_step, lam, min_d = 10, 0.1, 5, 2
    c.time_step = time_step
    # for traffic_scenario in [normal_traffic(c=c, lam=lam)]:
    for traffic_scenario in [
        normal_traffic(c=c, lam=lam, min_d=min_d),
        heavy_traffic_1(c=c, lam=lam, min_d=min_d, prob_heavy=0.01),
    ]:

        traffic_sequence, start_time = traffic_scenario.traffic_sequence(
            bridge=c.bridge, max_time=max_time
        )

        traffic = to_traffic(
            bridge=c.bridge,
            traffic_sequence=traffic_sequence,
            max_time=start_time + max_time,
            time_step=time_step,
        )

        start_index = int(start_time / time_step) + 1
        animate_traffic_top_view(
            c=c,
            bridge=c.bridge,
            bridge_scenario=HealthyDamage(),
            traffic_name=traffic_scenario.name,
            traffic=traffic[start_index:],
            start_time=start_index * time_step,
            time_step=time_step,
            fem_runner=OSRunner(c),
            response_type=ResponseType.YTranslation,
            save=c.get_image_path("animations", f"{traffic_scenario.name}.mp4"),
        )
Exemple #3
0
def uls_contour_plot(c: Config, x_i: int, z_i: int,
                     response_type: ResponseType):
    wheel_xs = c.bridge.wheel_track_xs(c)
    wheel_x = wheel_xs[x_i]
    wheel_zs = c.bridge.wheel_track_zs(c)
    wheel_z = wheel_zs[z_i]
    print_i(f"Wheel (x, z) = ({wheel_x}, {wheel_z})")
    plt.landscape()
    plt.subplot(2, 1, 1)
    healthy = list(
        ILMatrix.load_wheel_track(
            c=c,
            response_type=response_type,
            fem_runner=OSRunner(c),
            load_z_frac=c.bridge.z_frac(wheel_z),
            run_only=False,
            indices=[x_i],
        ))[0].resize()
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=healthy, sci_format=True, decimals=6)
    plt.title("Healthy")
    c = transverse_crack().use(c)[0]
    cracked = list(
        ILMatrix.load_wheel_track(
            c=c,
            response_type=response_type,
            fem_runner=OSRunner(c),
            load_z_frac=c.bridge.z_frac(wheel_z),
            run_only=False,
            indices=[x_i],
        ))[0].resize()
    plt.subplot(2, 1, 2)
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=cracked, sci_format=True, decimals=6)
    plt.title("Cracked")
    plt.tight_layout()
    plt.savefig(
        c.get_image_path(
            "verification",
            safe_str(
                f"uls-contour-x-{wheel_x}-z-{wheel_z}-{response_type.name()}")
            + ".pdf",
        ))
Exemple #4
0
 def build_with_refinement(refinement_radii):
     sim_params = SimParams(
         response_types=[response_type],
         ploads=[pload],
         refinement_radii=refinement_radii,
     )
     # Build and save the model file.
     if build:
         build_model_3d(
             c=min_config,
             expt_params=ExptParams([sim_params]),
             os_runner=OSRunner(min_config),
         )
     # Load and plot fem.
     if plot:
         sim_responses = load_fem_responses(
             c=min_config,
             sim_runner=OSRunner(min_config),
             response_type=response_type,
             sim_params=sim_params,
             run=True,
         )
         for scatter in [True, False]:
             top_view_bridge(min_config.bridge,
                             abutments=True,
                             piers=True,
                             lanes=True)
             plot_contour_deck(
                 c=min_config,
                 responses=sim_responses,
                 scatter=scatter,
                 levels=100,
             )
             plt.title(f"{refinement_radii}")
             plt.savefig(
                 min_config.get_image_path(
                     "debugging",
                     safe_str(
                         f"{response_type.name()}-{refinement_radii}-scatter-{scatter}"
                     ) + ".pdf",
                 ))
             plt.close()
Exemple #5
0
def make_event_plots(c: Config):
    """Make plots of events in different scenarios."""
    from plot.features import plot_events_from_traffic

    fem_runner = OSRunner(c)
    bridge_scenario = BridgeScenarioNormal()
    max_time, time_step, lam, min_d = 20, 0.01, 5, 2
    c.time_step = time_step
    sensor_zs = [lane.z_center() for lane in c.bridge.lanes]
    points = [Point(x=35, y=0, z=z) for z in sensor_zs]

    for response_type in [ResponseType.YTranslation]:
        for traffic_scenario in [
                normal_traffic(c=c, lam=lam, min_d=min_d),
                heavy_traffic_1(c=c, lam=lam, min_d=min_d, prob_heavy=0.01),
        ]:

            # Generate traffic under a scenario.
            traffic, start_index = traffic_scenario.traffic(
                bridge=c.bridge, max_time=max_time, time_step=time_step)
            traffic = traffic[start_index:]

            # Plot events from traffic.
            plot_events_from_traffic(
                c=c,
                bridge=c.bridge,
                bridge_scenario=bridge_scenario,
                traffic_name=traffic_scenario.name,
                traffic=traffic,
                start_time=start_index * time_step,
                time_step=time_step,
                response_type=ResponseType.YTranslation,
                points=points,
                fem_runner=OSRunner(c),
                save=c.get_image_path(
                    "events",
                    safe_str(
                        f"bs-{bridge_scenario.name}-ts-{traffic_scenario.name}"
                        f"-rt-{response_type.name()}"),
                ),
            )
Exemple #6
0
def make_normal_mv_load_animations(c: Config, per_axle: bool = False):
    """Make animations of a pload moving across a bridge."""
    plt.close()
    mv_load = MovingLoad.from_vehicle(x_frac=0,
                                      vehicle=sample_vehicle(c),
                                      lane=0)
    per_axle_str = f"-peraxle" if per_axle else ""
    for response_type in ResponseType:
        animate_mv_load(
            c,
            mv_load,
            response_type,
            OSRunner(c),
            per_axle=per_axle,
            save=safe_str(
                c.image_path(f"animations/{c.bridge.name}-{OSRunner(c).name}" +
                             f"-{response_type.name()}{per_axle_str}" +
                             f"-load-{mv_load.str_id()}")).lower() + ".mp4",
        )
Exemple #7
0
def density_no_effect(c: Config):
    """Output maximum and minimum fem with different density values."""
    response_types = [ResponseType.YTranslation, ResponseType.Strain]
    pload = PointLoad(x_frac=0.5, z_frac=0.5, kn=100)
    c.bridge.type = "debugging"

    def set_density(density):
        for section in c.bridge.sections:
            print(section.density)
            section.density = density
        for pier in c.bridge.supports:
            if not callable(pier._sections):
                raise ValueError("Experiment requires callable pier sections")
            original_sections = pier._sections

            def new_sections(section_frac_len):
                section = original_sections(section_frac_len)
                section.density = density
                return section

            pier._sections = new_sections

    for density in [0.2, 100]:
        clean_generated(c)
        set_density(density)
        for response_type in response_types:
            sim_params = SimParams(
                response_types=[response_type],
                ploads=[pload],
            )
            sim_responses = load_fem_responses(
                c=c,
                sim_runner=OSRunner(c),
                response_type=response_type,
                sim_params=sim_params,
                run=True,
            )
            amax, amin = max(sim_responses.values()), min(
                sim_responses.values())
            print_s(f"Density's ratio = {density}")
            print_s(f"Max {response_type.name()} = {amax}")
            print_s(f"Min {response_type.name()} = {amin}")
Exemple #8
0
def top_view_plot(c: Config, max_time: int, skip: int, damage_scenario):
    response_type = ResponseType.YTranslation
    # Create the traffic.
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=max_time,
    )
    assert len(traffic) == traffic_array.shape[0]
    # Points on the deck to collect fem.
    deck_points = [
        Point(x=x, y=0, z=z) for x in np.linspace(
            c.bridge.x_min, c.bridge.x_max, num=int(c.bridge.length * 2))
        for z in np.linspace(
            c.bridge.z_min, c.bridge.z_max, num=int(c.bridge.width * 2))
        # for x in np.linspace(c.bridge.x_min, c.bridge.x_max, num=30)
        # for z in np.linspace(c.bridge.z_min, c.bridge.z_max, num=10)
    ]
    point = Point(x=21, y=0, z=-8.4)  # Point to plot
    deck_points.append(point)
    # Traffic array to fem array.
    responses_array = responses_to_traffic_array(
        c=c,
        traffic_array=traffic_array,
        damage_scenario=damage_scenario,
        points=deck_points,
        response_type=response_type,
    )
    # Temperature effect July 1st.
    temps_2019 = temperature.load("holly-springs")
    temps_2019["temp"] = temperature.resize(temps_2019["temp"])
    effect_2019 = temperature.effect(
        c=c,
        response_type=response_type,
        points=deck_points,
        temps=temps_2019["temp"],
        solar=temps_2019["solar"],
        len_per_hour=60,
    ).T
    # The effect is ordered by time series and then by points. (104910, 301)
    assert len(effect_2019) == len(temps_2019)
    july_2019_i, july_2019_j = temperature.from_to_indices(
        temps_2019,
        datetime.fromisoformat(f"2019-10-01T00:00"),
        datetime.fromisoformat(f"2019-10-01T23:59"),
    )
    temp_effect = []
    for i in range(len(deck_points)):
        temp_effect.append(
            temperature.apply(
                # Effect for July 1st, for the current point..
                effect=effect_2019.T[i][july_2019_i:july_2019_j],
                # ..for the length of the time series.
                responses=responses_array,
            ))
    temp_effect = np.array(temp_effect)
    plt.subplot(2, 1, 1)
    plt.plot(effect_2019.T[-1])
    plt.subplot(2, 1, 2)
    plt.plot(temp_effect[-1])
    plt.show()
    # Determine response due to pier settlement.
    pd_response_at_point = 0
    if isinstance(damage_scenario, PierDispDamage):
        pd_expt = list(
            DCMatrix.load(c=c,
                          response_type=response_type,
                          fem_runner=OSRunner(c)))
        for pier_displacement in damage_scenario.pier_disps:
            pd_sim_responses = pd_expt[pier_displacement.pier]
            pd_response_at_point += pd_sim_responses.at_deck(
                point, interp=False) * (pier_displacement.displacement /
                                        c.pd_unit_disp)
    # Resize fem if applicable to response type.
    resize_f, units = resize_units(response_type.units())
    if resize_f is not None:
        responses_array = resize_f(responses_array)
        temp_effect = resize_f(temp_effect.T).T
        print(np.mean(temp_effect[-1]))
        pd_response_at_point = resize_f(pd_response_at_point)
    responses_w_temp = responses_array + temp_effect.T
    # Determine levels of the colourbar.
    amin, amax = np.amin(responses_array), np.amax(responses_array)
    # amin, amax = min(amin, -amax), max(-amin, amax)
    levels = np.linspace(amin, amax, 25)
    # All vehicles, for colour reference.
    all_vehicles = flatten(traffic, Vehicle)
    # Iterate through each time index and plot results.
    warmed_up_at = traffic_sequence[0][0].time_left_bridge(c.bridge)
    # Plot for each time step.
    for t_ind in range(len(responses_array))[::skip]:
        plt.landscape()
        # Plot the bridge top view.
        plt.subplot2grid((3, 1), (0, 0), rowspan=2)
        top_view_bridge(c.bridge, compass=False, lane_fill=False, piers=True)
        top_view_vehicles(
            bridge=c.bridge,
            mv_vehicles=flatten(traffic[t_ind], Vehicle),
            time=warmed_up_at + t_ind * c.sensor_hz,
            all_vehicles=all_vehicles,
        )
        responses = Responses(
            response_type=response_type,
            responses=[(responses_array[t_ind][p_ind], deck_points[p_ind])
                       for p_ind in range(len(deck_points))],
            units=units,
        )
        plot_contour_deck(c=c,
                          responses=responses,
                          levels=levels,
                          mm_legend=False)
        plt.scatter(
            [point.x],
            [point.z],
            label=f"Sensor in bottom plot",
            marker="o",
            color="red",
            zorder=10,
        )
        plt.legend(loc="upper right")
        plt.title(
            f"{response_type.name()} after {np.around(t_ind * c.sensor_hz, 4)} seconds"
        )
        # Plot the fem at a point.
        plt.subplot2grid((3, 1), (2, 0))
        time = t_ind * c.sensor_hz
        plt.axvline(x=time,
                    color="black",
                    label=f"Current time = {np.around(time, 4)} s")
        plt.plot(
            np.arange(len(responses_array)) * c.sensor_hz,
            responses_w_temp.T[-1],
            color="red",
            label="Total effect",
        )
        if isinstance(damage_scenario, PierDispDamage):
            plt.plot(
                np.arange(len(responses_array)) * c.sensor_hz,
                np.ones(temp_effect[-1].shape) * pd_response_at_point,
                color="green",
                label="Pier settlement effect",
            )
        plt.plot(
            np.arange(len(responses_array)) * c.sensor_hz,
            temp_effect[-1],
            color="blue",
            label="Temperature effect",
        )
        plt.ylabel(f"{response_type.name()} ({responses.units})")
        plt.xlabel("Time (s)")
        plt.title(f"{response_type.name()} at sensor in top plot")
        plt.legend(loc="upper right", framealpha=1)
        # Finally save the image.
        name = f"{damage_scenario.name}-{response_type.name()}-{t_ind}"
        plt.tight_layout()
        plt.savefig(c.get_image_path("classify/top-view", f"{name}.pdf"))
        plt.savefig(c.get_image_path("classify/top-view/png", f"{name}.png"))
        plt.close()
Exemple #9
0
def wagen_1_contour_plot(
    c: Config,
    x: int,
    crack_x: float,
    response_type: ResponseType,
    scatter: bool,
    run: bool,
    length: float,
    outline: bool,
    wheels: bool,
    temp: bool,
):
    original_c = c
    LOADS = False
    temp_bottom, temp_top = [17, 25]
    time = wagen1.time_at(x=x, bridge=c.bridge)

    def plot_wheels():
        if wheels:
            wagen1.plot_wheels(c=c,
                               time=time,
                               label="Truck 1 wheels",
                               zorder=100)

    center = c.bridge.x_max / 2
    min_x, max_x = center - 20, center + 20
    min_z, max_z = c.bridge.z_min, c.bridge.z_max

    def zoom_in():
        plt.ylim(min_z, max_z)
        plt.xlim(min_x, max_x)

    loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True)

    crack_f = lambda: transverse_crack(length=length, at_x=crack_x)
    c = healthy_damage_w_transverse_crack_nodes(crack_f).use(original_c)[0]
    deck_shells = get_bridge_shells(c.bridge)[0]
    healthy_responses = load_fem_responses(
        c=c,
        sim_params=SimParams(ploads=loads),
        response_type=response_type,
        sim_runner=OSRunner(c),
        run=run,
    ).at_shells(deck_shells)  # Convert fem to one per shell.
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        # Resize by E-6 from microstrain to strain to match temperature units.
        healthy_responses = healthy_responses.resize()
    before_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    if temp:
        healthy_deck_points = healthy_responses.deck_points()  # Point of fem.
        temp_effect = temperature.effect(
            c=c,
            response_type=response_type,
            points=healthy_deck_points,
            temps_bt=([temp_bottom], [temp_top]),
        ).T[0]  # Temperature effect at existing response points.
        healthy_responses = healthy_responses.add(temp_effect,
                                                  healthy_deck_points)
    after_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    print_i(f"Healthy, before/after = {before_temp}, {after_temp}")
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        healthy_responses = healthy_responses.map(lambda x: x * 1e6)
    else:
        healthy_responses = healthy_responses.resize()

    # Responses in cracked scenario.
    c = crack_f().use(original_c)[0]
    crack_responses = load_fem_responses(
        c=c,
        sim_params=SimParams(ploads=loads),
        response_type=response_type,
        sim_runner=OSRunner(c),
        run=run,
    ).at_shells(deck_shells)
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        # Resize by E-6 from microstrain to strain to match temperature units.
        crack_responses = crack_responses.resize()
    before_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    if temp:
        crack_deck_points = crack_responses.deck_points()  # Point of fem.
        temp_effect = temperature.effect(
            c=c,
            response_type=response_type,
            points=healthy_deck_points,
            temps_bt=([temp_bottom], [temp_top]),
        ).T[0]  # Temperature effect at existing response points.
        crack_responses = crack_responses.add(temp_effect, healthy_deck_points)
    after_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    print_i(f"Crack, before/after = {before_temp}, {after_temp}")
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        crack_responses = crack_responses.map(lambda x: x * 1e6)
    else:
        crack_responses = crack_responses.resize()

    # Limit to points in crack zone.
    without_cm = 35
    print(f"Avoid {without_cm} cm around crack zone")
    _without_crack_zone = crack_f().without(c.bridge, without_cm / 100)
    without_crack_zone = lambda p: not _without_crack_zone(p)
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        healthy_responses = healthy_responses.without(without_crack_zone)
        crack_responses = crack_responses.without(without_crack_zone)

    # Norm calculation.
    vmin = min(healthy_responses.values())
    vmax = max(healthy_responses.values())
    vmin = min(vmin, min(crack_responses.values()))
    vmax = max(vmax, max(crack_responses.values()))
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    print(f"Norm min/max = {vmin}, {vmax}")

    plt.portrait()
    plt.subplot(3, 1, 1)
    plot_contour_deck(
        c=c,
        responses=healthy_responses,
        ploads=loads if LOADS else [],
        scatter=scatter,
        norm=norm,
        decimals=2,
    )

    c_x_start, c_z_start, c_x_end, c_z_end = list(
        map(round_m,
            crack_f().crack_area(c.bridge)))

    def plot_outline(label="Crack zone"):
        if outline:
            plt.gca().add_patch(
                mpl.patches.Rectangle(
                    (c_x_start, c_z_start),
                    c_x_end - c_x_start,
                    c_z_end - c_z_start,
                    fill=not scatter,
                    edgecolor="black",
                    facecolor="white",
                    alpha=1,
                    label=label,
                ))

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline(label="Responses not considered")
    plot_wheels()
    zoom_in()

    def legend():
        plt.legend(
            loc="upper right",
            borderpad=0.2,
            labelspacing=0.2,
            borderaxespad=0,
            handletextpad=0.2,
            columnspacing=0.2,
        )

    legend()
    plt.title(f"Healthy bridge")
    plt.xlabel("")
    plt.tick_params(bottom=False, labelbottom=False)

    plt.subplot(3, 1, 2)
    plot_contour_deck(
        c=c,
        responses=crack_responses,
        ploads=loads if LOADS else [],
        scatter=scatter,
        norm=norm,
        decimals=2,
    )

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline()
    plot_wheels()
    zoom_in()

    legend()
    plt.title(f"Cracked bridge")
    plt.xlabel("")
    plt.tick_params(bottom=False, labelbottom=False)

    plt.subplot(3, 1, 3)
    responses = []
    for x in healthy_responses.deck_xs:
        for z in healthy_responses.zs[x][0]:
            responses.append((
                bridge_sim.sim.responses.responses[0][x][0][z] -
                crack_responses.at_deck(Point(x=x, z=z), interp=False),
                Point(x=x, z=z),
            ))
            # try:
            #     fem.append((
            #         healthy_responses.fem[0][x][0][z]
            #         - crack_responses.fem[0][x][0][z],
            #         Point(x=x, z=z)
            #     ))
            # except KeyError:
            #     pass
            #
    diff_responses = responses = Responses(
        response_type=response_type,
        responses=responses,
        units=healthy_responses.units,
    )
    plot_contour_deck(
        c=c,
        responses=diff_responses,
        ploads=loads if LOADS else [],
        cmap=mpl.cm.get_cmap("PiYG"),
        scatter=scatter,
        decimals=2,
    )

    print("********")
    print("********")
    print("********")
    grid_x, grid_z = 600, 200
    grid_points = list(
        filter(
            lambda p: not without_crack_zone(p),
            [
                Point(x=x, y=0, z=z)
                for x in np.linspace(c.bridge.x_min, c.bridge.x_max, grid_x)
                for z in np.linspace(c.bridge.z_min, c.bridge.z_max, grid_z)
            ],
        ))
    print(f"Amount grid points = {len(grid_points)}")
    grid_x_len = c.bridge.length / grid_x
    grid_z_len = c.bridge.width / grid_z
    grid_area = grid_x_len * grid_z_len
    print(f"Grid area = {grid_area}")
    print("Interpolating diff fem")
    interp_diff_responses = diff_responses.at_decks(grid_points)
    count_interp = len(interp_diff_responses)
    interp_diff_responses = interp_diff_responses[~np.
                                                  isnan(interp_diff_responses)]
    print(
        f"Removed {count_interp - len(interp_diff_responses)} of {count_interp} fem, remaining = {len(interp_diff_responses)}"
    )
    print("Finished interpolating diff fem")
    count_min, count_max = 0, 0
    d_min, d_max = min(diff_responses.values()), max(diff_responses.values())
    print(f"diff min, max = {d_min}, {d_max}")
    d_min08, d_max08 = d_min * 0.8, d_max * 0.8
    for interp_r in interp_diff_responses:
        if interp_r < d_min08:
            count_min += 1
        if interp_r > d_max08:
            count_max += 1
    print(f"Count = {count_min}, {count_max}")
    save_path = original_c.get_image_path(
        "verification",
        safe_str(
            f"truck1-contour-x-{x}{crack_x}{length}-{response_type.name()}-{temp}"
        ),
    )
    with open(save_path + ".txt", "w") as f:
        f.write(f"{count_min}, {count_max}\n")
        f.write(f"{count_min * grid_area}, {count_max * grid_area}")
    print(f"Wrote results to {save_path}.txt")

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline()
    plot_wheels()
    zoom_in()

    legend()
    temp_str = f"\nT_bot = {temp_bottom} °C, T_top = {temp_top} °C" if temp else ""
    plt.title(f"Difference of healthy & cracked bridge")
    rt_name = (f"Microstrain {response_type.ss_direction()}" if response_type
               in [ResponseType.Strain, ResponseType.StrainZZB
                   ] else response_type.name())

    plt.suptitle(f"{rt_name}: Truck 1 on healthy & cracked bridge{temp_str}")
    plt.tight_layout(rect=[0, 0.03, 1, 0.93 if temp else 0.95])
    plt.savefig(save_path + ".pdf")
Exemple #10
0
def compare_responses(c: Config):
    """Compare fem to Truck 1, direct simulation and matmul."""
    assert c.il_num_loads == 600
    num_times = 50
    close_times = 200
    # Running time:
    # responses_to_vehicles_d: num_times * 8
    # responses_to_vehicles_d: 4 * il_num_loads
    # responses_to_loads_m: 0 (4 * il_num_loads)
    # responses_to_loads_m: 0 (4 * il_num_loads)
    # Wagen 1 from the experimental campaign.

    point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4)
    end_time = wagen1.time_left_bridge(bridge=c.bridge)
    wagen1_times = list(np.linspace(0, end_time, num_times))
    more_wagen1_times = list(
        np.linspace(
            wagen1.time_at(x=point.x - 2, bridge=c.bridge),
            wagen1.time_at(x=point.x + 2, bridge=c.bridge),
            close_times,
        ))
    wagen1_times = sorted(wagen1_times + more_wagen1_times)
    plt.portrait()

    # Start with fem from direct simulation.
    responses_not_binned = responses_to_vehicles_d(
        c=c,
        response_type=ResponseType.YTranslation,
        points=[point],
        mv_vehicles=[wagen1],
        times=wagen1_times,
        sim_runner=OSRunner(c),
        binned=False,
    )
    plt.subplot(4, 1, 1)
    plt.title(f"{len(wagen1_times)} fem")
    plt.plot(wagen1_times, responses_not_binned)

    # Then fem from direct simulation with binning.
    c.shorten_paths = True
    responses_binned = responses_to_vehicles_d(
        c=c,
        response_type=ResponseType.YTranslation,
        points=[point],
        mv_vehicles=[wagen1],
        times=wagen1_times,
        sim_runner=OSRunner(c),
        binned=True,
    )
    c.shorten_paths = False
    plt.subplot(4, 1, 2)
    plt.title(f"{len(wagen1_times)} fem (binned)")
    plt.plot(wagen1_times, responses_binned)
    xlim = plt.xlim()

    num_times = int(end_time / c.sensor_hz)
    wagen1_times = np.linspace(0, end_time, num_times)

    # Then from 'TrafficArray' we get fem, without binning.
    wagen1_loads = [
        flatten(wagen1.to_point_load_pw(time=time, bridge=c.bridge), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(4, 1, 3)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} traffic_array")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))
    plt.xlim(xlim)

    # # Then from 'TrafficArray' we get fem, with binning.
    wagen1_loads = [
        flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm_binned = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(4, 1, 4)
    plt.title(
        f"{num_times} fem from {c.il_num_loads} il_num_loads\ntraffic_array binned"
    )
    plt.plot(wagen1_times, np.array(responses_ulm_binned).reshape(-1, 1))
    plt.xlim(xlim)

    plt.tight_layout()
    plt.savefig(
        c.get_image_path("system-verification", "compare-time-series.pdf"))
Exemple #11
0
def compare_axles(c: Config):
    """Compare fem between uniaxle vehicles and Truck 1."""
    assert c.il_num_loads == 600

    point = Point(x=c.bridge.x_max / 2, y=0, z=-8.4)
    end_time = wagen1.time_left_bridge(bridge=c.bridge)
    num_times = int(end_time / c.sensor_hz)
    wagen1_times = np.linspace(0, end_time, num_times)
    plt.portrait()

    wagen1_loads = [
        flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 1)
    plt.title(
        f"{num_times} fem with ULS = {c.il_num_loads} (Wagen 1 (4 axles))")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    bi_axle_loads = [
        flatten(bi_axle_vehicle.to_wheel_track_loads(c=c, time=time),
                PointLoad) for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=bi_axle_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 2)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (2 axles)")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    uni_axle_loads = [
        flatten(uni_axle_vehicle.to_wheel_track_loads(c=c, time=time),
                PointLoad) for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=uni_axle_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 3)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (1 axle)")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    plt.tight_layout()
    plt.savefig(c.get_image_path("system-verification", "compare-axles.pdf"))
Exemple #12
0
def cluster_damage(c: Config, mins: float):
    # Create the traffic.
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=mins * 60,
    )
    point = Point(x=21, y=0, z=-8.4)  # Point to investigate.
    # Collect vertical translation and strain for all scenarios scenarios.
    responses_y = []
    responses_s = []
    for damage_scenario in [
            healthy_damage,
            pier_disp_damage([(5, 0.5 / 1000)])
    ]:
        responses_y.append(
            responses_to_traffic_array(
                c=c,
                traffic_array=traffic_array,
                response_type=ResponseType.YTranslation,
                damage_scenario=damage_scenario,
                points=[point],
                sim_runner=OSRunner(c),
            ).T[0] * 1000)
        assert len(responses_y[-1]) == len(traffic_array)
        responses_s.append(
            responses_to_traffic_array(
                c=c,
                traffic_array=traffic_array,
                response_type=ResponseType.Strain,
                damage_scenario=damage_scenario,
                points=[point],
                sim_runner=OSRunner(c),
            ).T[0])
        assert len(responses_s[-1]) == len(traffic_array)
    # Calculate features per scenarios.
    damage_features = []
    damage_labels = []
    for damage_ind in range(len(responses_y)):
        y = responses_y[damage_ind]
        s = responses_s[damage_ind]
        for response_ind in range(len(y)):
            damage_features.append([y[response_ind], s[response_ind]])
            damage_labels.append(damage_ind)
    damage_features = np.array(damage_features)
    damage_labels = np.array(damage_labels)
    print_i(f"Dimensions of feature array = {damage_features.shape}")
    # Plot the reference data.
    plt.landscape()
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=damage_labels)
    plt.title("Reference")
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-ref.pdf"))
    plt.close()
    # Plot the gaussian mixture results.
    gmm = mixture.GaussianMixture(n_components=2).fit(damage_features)
    labels = flip(l=gmm.predict(damage_features), ref=damage_labels)
    plt.landscape()
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=labels)
    plt.title("Gaussian mixture n = 2")
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-model.pdf"))
    plt.close()
    # Plot and print the accuracy.
    # https://matplotlib.org/3.1.1/gallery/text_labels_and_annotations/custom_legends.html
    acc = abs(labels - damage_labels)
    total = defaultdict(lambda: 0)
    correct = defaultdict(lambda: 0)
    for ind, label in enumerate(damage_labels):
        total[label] += 1
        if acc[ind] == 0:
            correct[label] += 1
    for k, t in total.items():
        print_i(f"k = {k}: {correct[k]} / {t} = {correct[k] / t}")
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=acc)
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-acc.pdf"))
    plt.close()
Exemple #13
0
def il_plots(
    c: Config,
    num_loads: int = 100,
    num_subplot_ils: int = 12,
    fem_runner: Optional[FEMRunner] = None,
):
    """Make plots of the influence lines.

    Args:
        c: Config, global configuration object.
        num_loads: int, the number of loading positions or influence lines.
        num_subplot_ils: int, the number of influence lines on the subplots.
        fem_runner: Optional[FEMRunner], FEM program to run simulations with,
            default is OpenSees.

    """
    original_il_num_loads = c.il_num_loads
    c.il_num_loads = num_loads
    if fem_runner is None:
        fem_runner = OSRunner(c)

    pload_z_fracs = [None]  # A single wheel track value ignored for 2D.

    # If a 3D FEM then generate IL plots for each wheel track.
    if c.bridge.dimensions == Dimensions.D3:
        pload_z_fracs = wheel_tracks(c)

    for pload_z_frac in pload_z_fracs:
        for response_type in fem_runner.supported_response_types(c.bridge):

            # TODO: Remove once Stress and Strain are fixed.
            if c.bridge.dimensions == Dimensions.D3 and response_type in [
                ResponseType.Stress,
                ResponseType.Strain,
            ]:
                continue

            il_matrix = ILMatrix.load(
                c=c,
                response_type=response_type,
                fem_runner=fem_runner,
                load_z_frac=pload_z_frac,
            )

            filename = pstr(
                f"{il_matrix.fem_runner.name}-{response_type.name()}"
                + f"-loadz={c.bridge.z(pload_z_frac):.2f}-numloads-{num_loads}"
            )

            imshow_il(
                c=c,
                il_matrix=il_matrix,
                num_loads=num_loads,
                num_sensors=num_loads,
                save=c.get_image_path("ils", f"imshow-{filename}"),
            )

            matrix_subplots(
                c=c,
                resp_matrix=il_matrix,
                num_subplots=num_subplot_ils,
                num_x=num_loads,
                plot_func=plot_il,
                z_frac=il_matrix.load_z_frac,
                save=c.get_image_path("ils", f"subplots-{filename}"),
            )
    c.il_num_loads = original_il_num_loads
Exemple #14
0
def stress_strength_plot(c: Config, top: bool):
    """Plot the difference of tensile strength and stress under load."""
    original_c = c
    plt.portrait()
    response_type = ResponseType.StrainT if top else ResponseType.Strain
    settlement = 3
    temp_bottom, temp_top = 21, 30
    deck_points = [
        Point(x=x, y=0, z=z) for x in np.linspace(
            # c.bridge.x_min, c.bridge.x_max, num=10
            c.bridge.x_min,
            c.bridge.x_max,
            num=int(c.bridge.length * 3),
        ) for z in np.linspace(
            # c.bridge.z_min, c.bridge.z_max, num=10
            c.bridge.z_min,
            c.bridge.z_max,
            num=int(c.bridge.width * 3),
        )
    ]

    # Pier settlement.
    plt.subplot(3, 1, 1)
    c, sim_params = pier_disp_damage([(9, settlement / 1000)]).use(original_c)
    responses = (load_fem_responses(
        c=c,
        sim_runner=OSRunner(c),
        response_type=response_type,
        sim_params=sim_params,
    ).resize().to_stress(c.bridge))
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    plt.title(f"{settlement} mm pier settlement")
    print("Calculated stress from pier settlement")

    # Temperature effect.
    plt.subplot(3, 1, 2)
    c = original_c
    print(f"deck_points.shape = {np.array(deck_points).shape}")
    temp_effect = temperature.effect(
        c=c,
        response_type=response_type,
        points=deck_points,
        temps_bt=([temp_bottom], [temp_top]),
    ).T[0]
    print(f"temp_effect.shape = {np.array(temp_effect).shape}")
    responses = (Responses(
        response_type=response_type,
        responses=[(temp_effect[p_ind], deck_points[p_ind])
                   for p_ind in range(len(deck_points))
                   if not np.isnan(temp_effect[p_ind])],
    ).without(remove=without.edges(c=c, radius=2)).to_stress(c.bridge))
    top_view_bridge(c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    plt.title(f"T_bot, T_top = {temp_bottom}°C, {temp_top}°C")
    # plt.title(f"{top_str} stress\nbottom, top = {temp_bottom}, {temp_top}")
    print("Calculated stress from temperature")

    # Cracked concrete.
    plt.subplot(3, 1, 3)
    time = wagen1.time_at(x=52, bridge=c.bridge)
    print(f"wagen1.total_kn() = {wagen1.kn}")
    wagen1.kn = 400
    loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True)
    c, sim_params = transverse_crack().use(original_c)

    c, sim_params = HealthyDamage().use(original_c)
    sim_params.ploads = loads
    responses = (load_fem_responses(
        c=c,
        sim_runner=OSRunner(c),
        response_type=response_type,
        sim_params=sim_params,
    ).resize().to_stress(c.bridge))
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    # plt.title(f"Top stress: cracked concrete\nunder a {int(wagen1.kn)} kN vehicles")
    plt.title(f"{int(wagen1.total_kn())} kN vehicle")

    plt.suptitle(f"Stress {response_type.ss_direction()} for 3 scenarios")
    equal_lims("x", 3, 1)
    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    plt.savefig(
        original_c.get_image_path(
            "validation", f"stress-strength-{response_type.name()}.pdf"))
    plt.close()