def main():

    fe.openfemm()
    fe.newdocument(0)

    rotor = PM_Rotor(dri=50, dm=10, dmp=3, alpha_m=60, p=2, OR=100)
    rotor.draw()
    rotor.set_materials('test', 'test')

    fe.mi_zoomnatural()
    def setSpace(self):
        """Define space

        Define the whole space used in FEMM

        Raises:
            Exception -- Coil and projectile must be defined first to compute a safe space size.
        """
        if self.Lp is not None and self.Lb is not None:
            femm.mi_clearselected()
            self.espace = self.__space_factor * max(self.Lb, self.Rbo, self.Lp)
            femm.mi_addblocklabel(2 * self.Rbo, 0)
            femm.mi_selectlabel(2 * self.Rbo, 0)
            femm.mi_setblockprop("Air", 0, self.meshsize, "<None>", 0, 3, 0)
            femm.mi_makeABC(7, self.espace, 0, 0, 0)
            femm.mi_zoomnatural()
        else:
            raise Exception("Define coil and projectile first.")
Exemple #3
0
def calc_inductance(tg, currents, inductances=(None, None), **kwargs):
    ''' Setup of magneto-static problem in femm to calculate inductance and
    resistance of planar transformer.

    Args:
        tg (:obj:'TransformerGeometry'): tg contains all geometry information
        of the transformer.
        currents (list of float): currents in the primary and secondary side
        circuits on the form [I_prim, I_sec].
        inductances (list of float): self-inductances of the primary and
        secondary side circuits on the form [L_prim, L_sec]. Used to calculate
        mutual inductance.

    Returns:
        (inductance, resistance): calculated self or mutual inductance and
        equivalent series resistance of either primary or secondary circuit.
    '''

    etiquettes_dict = {}  # Dictionary to store coordinates of nodes

    # initialitiation of the magneto-static problem
    boundary_radius = 2 * tg.radius_dielectric
    initial_setup(boundary_radius, currents, **kwargs)

    # draw geometry and add block labels
    add_conductors(tg, etiquettes_dict)
    add_pcbs(tg)
    add_isolation(tg)
    add_block_labels(tg, etiquettes_dict)

    # mi zoomnatural()
    # From manual: zooms to a “natural” view with sensible extents.
    femm.mi_zoomnatural()

    # Saving geometry file
    femm.mi_saveas('inductance_transformer.fem')

    # Meshing and analysis
    # From manual: Note that it is not necessary to run mesh before performing
    # an analysis, as mi_analyze() will make sure the mesh is up to date before
    # running an analysis.

    # mi analyze(flag)
    # From manual: runs fkern to solve the problem. The flag parameter controls
    # whether the fkern window is visible or minimized. For a visible window,
    # either specify no value for flag or specify 0. For a minimized window,
    # flag should be set to 1.
    femm.mi_analyze(1)

    # Post-processing
    femm.mi_loadsolution()

    # mo_seteditmode(mode)
    # From manual: Sets themode of the postprocessor to point, contour, or area
    # mode. Valid entries for mode are "point", "contour", and "area".
    femm.mo_seteditmode('area')

    # mo_blockintegral(type)
    # From manual: Calculate a block integral for the selected blocks
    # Type Definition
    # 0 A · J
    # 1 A
    # 2 Magnetic field energy
    # 3 Hysteresis and/or lamination losses
    # 4 Resistive losses
    # 5 Block cross-section area
    # 6 Total losses
    # 7 Total current
    # 8 Integral of Bx (or Br) over block
    # 9 Integral of By (or rBz) over block
    # 10 Block volume
    # ...

    # mo_getcircuitproperties("circuit")
    # From manual: Used primarily to obtain impedance information associated
    # with circuit properties. Properties are returned for the circuit property
    # named "circuit". Three values are returned by the function. In order,
    # these results are:
    # – current Current carried by the circuit
    # – volts Voltage drop across the circuit
    # – flux_re Circuit’s flux linkage

    # mo_groupselectblock(n)
    # From manual: Selects all the blocks that are labeled by block labels
    # that are members of group n. If no number is specified (i.e.
    # mo_groupselectblock() ), all blocks are selected.

    # Calculate the inductance of the circuit with non-zero current. If both
    # currents are given, we calculate the mutual inductance.
    L1, L2 = inductances
    if (currents[0] > 0) and (currents[1] == 0):
        circ = femm.mo_getcircuitproperties('phase_prim')
        resistance = circ[1].real
        inductance = abs(circ[2] / circ[0])
    elif (currents[0] == 0) and (currents[1] > 0):
        circ = femm.mo_getcircuitproperties('phase_sec')
        resistance = circ[1].real
        inductance = abs(circ[2] / circ[0])
    else:
        femm.mo_groupselectblock()
        # axisymmetric problem, integral is multiplied by 2
        Wm = femm.mo_blockintegral(2) * 2
        inductance = ((Wm - 0.5 *
                       (L1 * currents[1]**2 + L2 * currents[0]**2)) /
                      (currents[0] * currents[1]))
        resistance = 0
        femm.mo_clearblock()

    if kwargs.get('close') is True:
        femm.closefemm()

    return (inductance, resistance)
Exemple #4
0
def draw_FEMM(
    output,
    is_mmfr,
    is_mmfs,
    sym,
    is_antiper,
    type_calc_leakage,
    is_remove_vent=False,
    is_remove_slotS=False,
    is_remove_slotR=False,
    is_stator_linear_BH=False,
    is_rotor_linear_BH=False,
    kgeo_fineness=1,
    kmesh_fineness=1,
    user_FEMM_dict={},
    path_save="FEMM_model.fem",
    is_sliding_band=True,
):
    """Draws and assigns the property of the machine in FEMM
    
    Parameters
    ----------
    output : Output
        Output object
    is_mmfr : bool
        1 to compute the rotor magnetomotive force / rotor
        magnetic field
    is_mmfs : bool
        1 to compute the stator magnetomotive force/stator
        magnetic field
    type_calc_leakage : int
        0 no leakage calculation
        1 calculation using single slot
    is_remove_vent : bool
        True to remove the ventilation ducts in FEMM (Default value = False)
    is_remove_slotS : bool
        True to solve without slot effect on the Stator (Default value = False)
    is_remove_slotR : bool
        True to solve without slot effect on the Rotor (Default value = False)
    is_stator_linear_BH: bool
        1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    is_rotor_linear_BH: bool
        1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    kgeo_fineness : float
        global coefficient to adjust geometry fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    kmesh_fineness : float
        global coefficient to adjust mesh fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    sym : int
        the symmetry applied on the stator and the rotor (take into account antiperiodicity)
    is_antiper: bool
        To apply antiperiodicity boundary conditions

    Returns
    -------

    FEMM_dict : dict
        Dictionnary containing the main parameters of FEMM (including circuits and materials)
    """

    # Initialization from output for readibility
    BHs = output.geo.stator.BH_curve  # Stator B(H) curve
    BHr = output.geo.rotor.BH_curve  # Rotor B(H) curve
    Is = output.elec.Is  # Stator currents waveforms
    Ir = output.elec.Ir  # Rotor currents waveforms
    machine = output.simu.machine

    # Modifiy the machine to match the conditions
    machine = type(machine)(init_dict=machine.as_dict())
    if is_remove_slotR:  # Remove all slots on the rotor
        lam_dict = machine.rotor.as_dict()
        machine.rotor = Lamination(init_dict=lam_dict)
    if is_remove_slotS:  # Remove all slots on the stator
        lam_dict = machine.stator.as_dict()
        machine.stator = Lamination(init_dict=lam_dict)
    if is_remove_vent:  # Remove all ventilations
        machine.rotor.axial_vent = list()
        machine.stator.axial_vent = list()

    # Building geometry of the (modified) stator and the rotor
    surf_list = list()
    lam_ext = machine.get_lamination(is_internal=False)
    lam_int = machine.get_lamination(is_internal=True)
    # adding Internal Lamination surface
    surf_list.extend(lam_int.build_geometry(sym=sym))

    # adding the Airgap surface
    if is_sliding_band:
        surf_list.extend(
            get_sliding_band(
                sym=sym,
                lam_int=output.simu.machine.get_lamination(True),
                lam_ext=output.simu.machine.get_lamination(False),
            )
        )
    else:
        surf_list.extend(
            get_airgap_surface(
                lam_int=output.simu.machine.get_lamination(True),
                lam_ext=output.simu.machine.get_lamination(False),
            )
        )

    # adding External Lamination surface
    surf_list.extend(lam_ext.build_geometry(sym=sym))

    # Computing parameter (element size, arcspan...) needed to define the simulation
    FEMM_dict = comp_FEMM_dict(
        machine, kgeo_fineness, kmesh_fineness, type_calc_leakage
    )
    FEMM_dict.update(user_FEMM_dict)  # Overwrite some values if needed

    # The package must be initialized with the openfemm command.
    femm.openfemm()

    # We need to create a new Magnetostatics document to work on.
    femm.newdocument(0)

    # Minimize the main window for faster geometry creation.
    femm.main_minimize()

    # defining the problem
    femm.mi_probdef(0, "meters", FEMM_dict["pbtype"], FEMM_dict["precision"])

    # Creation of all the materials and circuit in FEMM
    prop_dict, materials, circuits = create_FEMM_materials(
        machine,
        surf_list,
        Is,
        Ir,
        BHs,
        BHr,
        is_mmfs,
        is_mmfr,
        is_stator_linear_BH,
        is_rotor_linear_BH,
        is_eddies,
        j_t0=0,
    )
    create_FEMM_boundary_conditions(sym=sym, is_antiper=is_antiper)

    # Draw and assign all the surfaces of the machine
    for surf in surf_list:
        label = surf.label
        # Get the correct element size and group according to the label
        mesh_dict = get_mesh_param(label, FEMM_dict)
        surf.draw_FEMM(
            nodeprop="None",
            maxseg=FEMM_dict["arcspan"],  # max span of arc element in degrees
            propname="None",
            elementsize=mesh_dict["element_size"],
            automesh=mesh_dict["automesh"],
            hide=False,
            group=mesh_dict["group"],
        )
        assign_FEMM_surface(
            surf, prop_dict[label], mesh_dict, machine.rotor, machine.stator
        )

    femm.mi_zoomnatural()  # Zoom out
    femm.mi_probdef(
        FEMM_dict["freqpb"],
        "meters",
        FEMM_dict["pbtype"],
        FEMM_dict["precision"],
        FEMM_dict["Lfemm"],
        FEMM_dict["minangle"],
        FEMM_dict["acsolver"],
    )
    femm.smartmesh(FEMM_dict["smart_mesh"])
    femm.mi_saveas(path_save)  # Save
    # femm.mi_close()

    FEMM_dict["materials"] = materials
    FEMM_dict["circuits"] = circuits

    return FEMM_dict
Exemple #5
0
# Apply the materials to the appropriate block labels
femm.mi_selectlabel(5,0);
femm.mi_setblockprop('Iron', 0, 1, '<None>', 0, 0, 0);
femm.mi_clearselected()

femm.mi_selectlabel(75,0);
femm.mi_setblockprop('Coil', 0, 1, 'icoil', 0, 0, 200);
femm.mi_clearselected()

femm.mi_selectlabel(30,100);
femm.mi_setblockprop('Air', 0, 1, '<None>', 0, 0, 0);
femm.mi_clearselected()

# Now, the finished input geometry can be displayed.
femm.mi_zoomnatural()

# We have to give the geometry a name before we can analyze it.
femm.mi_saveas('coil.fem');


# Now,analyze the problem and load the solution when the analysis is finished
femm.mi_analyze()
femm.mi_loadsolution()

# If we were interested in the flux density at specific positions, 
# we could inquire at specific points directly:
b0=femm.mo_getb(0,0);
print('Flux density at the center of the bar is %g T' % b0[1]);
b1=femm.mo_getb(0,50);
print('Flux density at r=0,z=50 is %g T' % b1[1]);
femm.mi_getmaterial(
    'Air')  # fetches the material called air from the materials library
femm.mi_getmaterial('N48')

femm.mi_selectlabel(10, 3)  # assign the material to the block
femm.mi_setblockprop(
    'N48', 0, 1, '<None>', 90, 0, 0
)  # setblockprop(’blockname’, automesh, meshsize, ’incircuit’, magdir, group, turns)
femm.mi_clearselected()

femm.mi_selectlabel(1, 1)
femm.mi_setblockprop('Air', 0, 1, '<None>', 0, 0, 0)
femm.mi_clearselected()

femm.mi_zoomnatural()  # to check geometry while debuging
femm.mi_saveas('ring.fem')

# meshing
# automaticaly done by the analysis function

# analysis
femm.mi_analyze()

# result data export
femm.mi_loadsolution()

# plot the flux density along z axis
zee = []
bee = []
for n in range(-0, 30):
Exemple #7
0
def draw_FEMM(
    output,
    is_mmfr,
    is_mmfs,
    sym,
    is_antiper,
    type_calc_leakage,
    is_remove_vent=False,
    is_remove_slotS=False,
    is_remove_slotR=False,
    type_BH_stator=0,
    type_BH_rotor=0,
    kgeo_fineness=1,
    kmesh_fineness=1,
    user_FEMM_dict={},
    path_save="FEMM_model.fem",
    is_sliding_band=True,
    transform_list=[],
    rotor_dxf=None,
    stator_dxf=None,
):
    """Draws and assigns the property of the machine in FEMM
    
    Parameters
    ----------
    output : Output
        Output object
    is_mmfr : bool
        1 to compute the rotor magnetomotive force / rotor
        magnetic field
    is_mmfs : bool
        1 to compute the stator magnetomotive force/stator
        magnetic field
    type_calc_leakage : int
        0 no leakage calculation
        1 calculation using single slot
    is_remove_vent : bool
        True to remove the ventilation ducts in FEMM (Default value = False)
    is_remove_slotS : bool
        True to solve without slot effect on the Stator (Default value = False)
    is_remove_slotR : bool
        True to solve without slot effect on the Rotor (Default value = False)
    type_BH_stator: int
        2 Infinite permeability, 1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    type_BH_rotor: bool
        2 Infinite permeability, 1 to use linear B(H) curve according to mur_lin, 0 to use the B(H) curve
    kgeo_fineness : float
        global coefficient to adjust geometry fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    kmesh_fineness : float
        global coefficient to adjust mesh fineness
        in FEMM (1: default ; > 1: finner ; < 1: less fine)
    sym : int
        the symmetry applied on the stator and the rotor (take into account antiperiodicity)
    is_antiper: bool
        To apply antiperiodicity boundary conditions
    rotor_dxf : DXFImport
        To use a dxf version of the rotor instead of build_geometry
    stator_dxf : DXFImport
        To use a dxf version of the stator instead of build_geometry

    Returns
    -------

    FEMM_dict : dict
        Dictionnary containing the main parameters of FEMM (including circuits and materials)
    """

    # Initialization from output for readibility
    BHs = output.geo.stator.BH_curve  # Stator B(H) curve
    BHr = output.geo.rotor.BH_curve  # Rotor B(H) curve
    Is = output.elec.Is  # Stator currents waveforms
    Ir = output.elec.Ir  # Rotor currents waveforms
    machine = output.simu.machine

    # Computing parameter (element size, arcspan...) needed to define the simulation
    FEMM_dict = comp_FEMM_dict(machine, kgeo_fineness, kmesh_fineness,
                               type_calc_leakage)
    FEMM_dict.update(user_FEMM_dict)  # Overwrite some values if needed

    # The package must be initialized with the openfemm command.
    try:
        femm.openfemm()
    except Exception as e:
        raise FEMMError(
            "ERROR: Unable to open FEMM, please check that FEMM is correctly installed\n"
            + str(e))

    # We need to create a new Magnetostatics document to work on.
    femm.newdocument(0)

    # Minimize the main window for faster geometry creation.
    femm.main_minimize()

    # defining the problem
    femm.mi_probdef(0, "meters", FEMM_dict["pbtype"], FEMM_dict["precision"])

    # Modifiy the machine to match the conditions
    machine = type(machine)(init_dict=machine.as_dict())
    if is_remove_slotR:  # Remove all slots on the rotor
        lam_dict = machine.rotor.as_dict()
        machine.rotor = Lamination(init_dict=lam_dict)
    if is_remove_slotS:  # Remove all slots on the stator
        lam_dict = machine.stator.as_dict()
        machine.stator = Lamination(init_dict=lam_dict)
    if is_remove_vent:  # Remove all ventilations
        machine.rotor.axial_vent = list()
        machine.stator.axial_vent = list()

    # Building geometry of the (modified) stator and the rotor
    surf_list = list()
    lam_list = machine.get_lam_list()
    lam_int = lam_list[0]
    lam_ext = lam_list[1]

    # Adding no_mesh for shaft if needed
    if lam_int.Rint > 0 and sym == 1:
        surf_list.append(
            Circle(point_ref=0, radius=lam_int.Rint, label="No_mesh"))

    # adding the Airgap surface
    if is_sliding_band:
        surf_list.extend(
            get_sliding_band(sym=sym, lam_int=lam_int, lam_ext=lam_ext))
    else:
        surf_list.extend(get_airgap_surface(lam_int=lam_int, lam_ext=lam_ext))

    # adding Both laminations surfaces (or import from DXF)
    if rotor_dxf is not None:
        femm.mi_readdxf(rotor_dxf.file_path)
        surf_list.extend(rotor_dxf.get_surfaces())
    else:
        surf_list.extend(machine.rotor.build_geometry(sym=sym))
    if stator_dxf is not None:
        femm.mi_readdxf(stator_dxf.file_path)
        surf_list.extend(stator_dxf.get_surfaces())
    else:
        surf_list.extend(machine.stator.build_geometry(sym=sym))

    # Applying user defined modifications
    for transfrom in transform_list:
        for surf in surf_list:
            if transfrom["label"] in surf.label and transfrom[
                    "type"] == "rotate":
                surf.rotate(transfrom["value"])
            elif transfrom["label"] in surf.label and transfrom[
                    "type"] == "translate":
                surf.translate(transfrom["value"])

    # Creation of all the materials and circuit in FEMM
    prop_dict, materials, circuits = create_FEMM_materials(
        machine,
        surf_list,
        Is,
        Ir,
        BHs,
        BHr,
        is_mmfs,
        is_mmfr,
        type_BH_stator,
        type_BH_rotor,
        is_eddies,
        j_t0=0,
    )
    create_FEMM_boundary_conditions(sym=sym, is_antiper=is_antiper)

    # Draw and assign all the surfaces of the machine
    for surf in surf_list:
        label = surf.label
        # Get the correct element size and group according to the label
        surf.draw_FEMM(
            nodeprop="None",
            maxseg=FEMM_dict["arcspan"],  # max span of arc element in degrees
            propname="None",
            FEMM_dict=FEMM_dict,
            hide=False,
        )
        assign_FEMM_surface(surf, prop_dict[label], FEMM_dict, machine.rotor,
                            machine.stator)

    # Apply BC for DXF import
    if rotor_dxf is not None:
        for BC in rotor_dxf.BC_list:
            if BC[1] is True:  # Select Arc
                femm.mi_selectarcsegment(BC[0].real, BC[0].imag)
                femm.mi_setarcsegmentprop(FEMM_dict["arcspan"], BC[2], False,
                                          None)
            else:  # Select Line
                femm.mi_selectsegment(BC[0].real, BC[0].imag)
                femm.mi_setsegmentprop(BC[2], None, None, False, None)
            femm.mi_clearselected()

    femm.mi_zoomnatural()  # Zoom out
    femm.mi_probdef(
        FEMM_dict["freqpb"],
        "meters",
        FEMM_dict["pbtype"],
        FEMM_dict["precision"],
        FEMM_dict["Lfemm"],
        FEMM_dict["minangle"],
        FEMM_dict["acsolver"],
    )
    femm.smartmesh(FEMM_dict["smart_mesh"])
    femm.mi_saveas(path_save)  # Save
    # femm.mi_close()

    FEMM_dict["materials"] = materials
    FEMM_dict["circuits"] = circuits

    return FEMM_dict
Exemple #8
0
def zoom():
    femm.mi_refreshview()
    femm.mi_zoomnatural()
    def fit_zoom(self):
        """Méthode permettant de générer la géométrie"""

        # Zoom pour avoir une meilleur vue
        femm.mi_zoomnatural()
    def zoom(method='natural'):

        if method.lower() == 'natural':
            fe.mi_zoomnatural()