def test_calc_int_flux_sensitivity(): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt( os.path.expandvars('$FERMIPY_ROOT/data/iso_P8R2_SOURCE_V6_v06.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R2_SOURCE_V6', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.int_flux_threshold(c, fn, 25.0, 3.0) assert_allclose(o['eflux'], 1.0719847971553671e-06, rtol=3E-3) assert_allclose(o['flux'], 1.550305083355546e-09, rtol=3E-3) assert_allclose(o['npred'], 511.16725330021416, rtol=3E-3) assert_allclose(o['dnde'], 1.5518569402958423e-14, rtol=3E-3) assert_allclose(o['e2dnde'], 1.5518569402958427e-07, rtol=3E-3) assert_allclose( o['bins']['flux'], np.array([ 3.88128407e-10, 2.91055245e-10, 2.18260643e-10, 1.63672392e-10, 1.22736979e-10, 9.20397499e-11, 6.90200755e-11, 5.17577549e-11, 3.88128407e-11, 2.91055245e-11, 2.18260643e-11, 1.63672392e-11, 1.22736979e-11, 9.20397499e-12, 6.90200755e-12, 5.17577549e-12, 3.88128407e-12, 2.91055245e-12, 2.18260643e-12, 1.63672392e-12, 1.22736979e-12, 9.20397499e-13, 6.90200755e-13, 5.17577549e-13 ]), rtol=1E-3)
def test_calc_int_flux_sensitivity(): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt( os.path.expandvars('$FERMI_DIFFUSE_DIR/iso_P8R3_SOURCE_V3_v1.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R3_SOURCE_V3', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.int_flux_threshold(c, fn, 25.0, 3.0) assert_allclose(o['eflux'], 1.15296479181e-06, rtol=3E-3) assert_allclose(o['flux'], 1.66741840222e-09, rtol=3E-3) assert_allclose(o['npred'], 549.71066228, rtol=3E-3) assert_allclose(o['dnde'], 1.66908748971e-14, rtol=3E-3) assert_allclose(o['e2dnde'], 1.66908748971e-07, rtol=3E-3) assert_allclose(o['bins']['flux'], np.array([ 4.180875e-10, 3.135214e-10, 2.351078e-10, 1.763060e-10, 1.322108e-10, 9.914417e-11, 7.434764e-11, 5.575286e-11, 4.180876e-11, 3.135216e-11, 2.351078e-11, 1.763060e-11, 1.322108e-11, 9.914417e-12, 7.434764e-12, 5.575286e-12, 4.180875e-12, 3.135214e-12, 2.351078e-12, 1.763060e-12, 1.322108e-12, 9.914417e-13, 7.434764e-13, 5.575286e-13 ]), rtol=1E-3)
def test_calc_diff_flux_sensitivity(create_diffuse_dir): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt(os.path.expandvars('$FERMI_DIFFUSE_DIR/iso_P8R3_SOURCE_V3_v1.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R3_SOURCE_V3', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.diff_flux_threshold(c, fn, 25.0, 3.0) assert_allclose(o['eflux'], np.array([9.93077714e-07, 8.59371115e-07, 7.44896026e-07, 6.61397166e-07, 5.67842613e-07, 4.93802411e-07, 4.22501374e-07, 3.69299411e-07, 3.16648674e-07, 2.81050363e-07, 2.52941925e-07, 2.35549281e-07, 2.27269823e-07, 2.33109741e-07, 2.28212061e-07, 2.22473996e-07, 2.26623213e-07, 2.46539227e-07, 2.61423960e-07, 3.04766386e-07, 3.35688695e-07, 4.09265051e-07, 4.79776973e-07, 5.93001330e-07]), rtol=3E-3) assert_allclose(o['flux'], np.array([8.62941353e-09, 5.59988099e-09, 3.63993562e-09, 2.42359683e-09, 1.56036437e-09, 1.01753944e-09, 6.52869186e-10, 4.27933870e-10, 2.75153929e-10, 1.83139573e-10, 1.23600112e-10, 8.63137188e-11, 6.24510606e-11, 4.80350743e-11, 3.52644113e-11, 2.57796669e-11, 1.96925718e-11, 1.60651237e-11, 1.27744860e-11, 1.11677353e-11, 9.22432852e-12, 8.43340011e-12, 7.41374161e-12, 6.87153420e-12]), rtol=3E-3)
def test_calc_int_flux_sensitivity(): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt(os.path.expandvars('$FERMIPY_ROOT/data/iso_P8R2_SOURCE_V6_v06.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R2_SOURCE_V6', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.int_flux_threshold(c, fn, 25.0, 3.0) assert_allclose(o['eflux'], 1.0719847971553671e-06, rtol=3E-3) assert_allclose(o['flux'], 1.550305083355546e-09, rtol=3E-3) assert_allclose(o['npred'], 511.16725330021416, rtol=3E-3) assert_allclose(o['dnde'], 1.5518569402958423e-14, rtol=3E-3) assert_allclose(o['e2dnde'], 1.5518569402958427e-07, rtol=3E-3) assert_allclose(o['bins']['flux'], np.array([3.88128407e-10, 2.91055245e-10, 2.18260643e-10, 1.63672392e-10, 1.22736979e-10, 9.20397499e-11, 6.90200755e-11, 5.17577549e-11, 3.88128407e-11, 2.91055245e-11, 2.18260643e-11, 1.63672392e-11, 1.22736979e-11, 9.20397499e-12, 6.90200755e-12, 5.17577549e-12, 3.88128407e-12, 2.91055245e-12, 2.18260643e-12, 1.63672392e-12, 1.22736979e-12, 9.20397499e-13, 6.90200755e-13, 5.17577549e-13]), rtol=1E-3)
def test_calc_diff_flux_sensitivity(): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt(os.path.expandvars('$FERMIPY_ROOT/data/iso_P8R2_SOURCE_V6_v06.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R2_SOURCE_V6', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.diff_flux_threshold(c, fn, 25.0, 3.0) assert_allclose(o['eflux'], np.array([9.46940878e-07, 8.18350327e-07, 7.08228859e-07, 6.25785181e-07, 5.45241744e-07, 4.80434705e-07, 4.16747935e-07, 3.68406513e-07, 3.16719850e-07, 2.79755007e-07, 2.50862769e-07, 2.31349646e-07, 2.16286209e-07, 2.08381335e-07, 2.02673929e-07, 2.05372045e-07, 2.14355673e-07, 2.29584275e-07, 2.53220397e-07, 2.80878974e-07, 3.19989251e-07, 3.74686765e-07, 4.49321103e-07, 5.48865583e-07]), rtol=3E-3) assert_allclose(o['flux'], np.array([8.22850449e-09, 5.33257909e-09, 3.46076145e-09, 2.29310172e-09, 1.49825986e-09, 9.89993669e-10, 6.43978699e-10, 4.26899204e-10, 2.75215778e-10, 1.82295486e-10, 1.22584132e-10, 8.47748218e-11, 5.94328933e-11, 4.29394879e-11, 3.13181379e-11, 2.37979404e-11, 1.86265760e-11, 1.49602959e-11, 1.23736187e-11, 1.02924147e-11, 8.79292634e-12, 7.72087281e-12, 6.94312304e-12, 6.36010146e-12]), rtol=3E-3)
def test_calc_diff_flux_sensitivity(): ltc = LTCube.create_from_obs_time(3.1536E8) c = SkyCoord(10.0, 10.0, unit='deg', frame='galactic') ebins = 10**np.linspace(2.0, 5.0, 8 * 3 + 1) gdiff = Map.create_from_fits(galdiff_path) iso = np.loadtxt( os.path.expandvars('$FERMIPY_ROOT/data/iso_P8R2_SOURCE_V6_v06.txt'), unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, 'P8R2_SOURCE_V6', [['FRONT', 'BACK']]) fn = spectrum.PowerLaw([1E-13, -2.0], scale=1E3) o = scalc.diff_flux_threshold(c, fn, 25.0, 3.0) assert_allclose( o['eflux'], np.array([ 9.46940878e-07, 8.18350327e-07, 7.08228859e-07, 6.25785181e-07, 5.45241744e-07, 4.80434705e-07, 4.16747935e-07, 3.68406513e-07, 3.16719850e-07, 2.79755007e-07, 2.50862769e-07, 2.31349646e-07, 2.16286209e-07, 2.08381335e-07, 2.02673929e-07, 2.05372045e-07, 2.14355673e-07, 2.29584275e-07, 2.53220397e-07, 2.80878974e-07, 3.19989251e-07, 3.74686765e-07, 4.49321103e-07, 5.48865583e-07 ]), rtol=3E-3) assert_allclose( o['flux'], np.array([ 8.22850449e-09, 5.33257909e-09, 3.46076145e-09, 2.29310172e-09, 1.49825986e-09, 9.89993669e-10, 6.43978699e-10, 4.26899204e-10, 2.75215778e-10, 1.82295486e-10, 1.22584132e-10, 8.47748218e-11, 5.94328933e-11, 4.29394879e-11, 3.13181379e-11, 2.37979404e-11, 1.86265760e-11, 1.49602959e-11, 1.23736187e-11, 1.02924147e-11, 8.79292634e-12, 7.72087281e-12, 6.94312304e-12, 6.36010146e-12 ]), rtol=3E-3)
def run_flux_sensitivity(**kwargs): index = kwargs.get('index', 2.0) sedshape = kwargs.get('sedshape', 'PowerLaw') cutoff = kwargs.get('cutoff', 1e3) curvindex = kwargs.get('curvindex', 1.0) beta = kwargs.get('beta', 0.0) emin = kwargs.get('emin', 10**1.5) emax = kwargs.get('emax', 10**6.0) nbin = kwargs.get('nbin', 18) glon = kwargs.get('glon', 0.0) glat = kwargs.get('glat', 0.0) ltcube_filepath = kwargs.get('ltcube', None) galdiff_filepath = kwargs.get('galdiff', None) isodiff_filepath = kwargs.get('isodiff', None) galdiff_fit_filepath = kwargs.get('galdiff_fit', None) isodiff_fit_filepath = kwargs.get('isodiff_fit', None) wcs_npix = kwargs.get('wcs_npix', 40) wcs_cdelt = kwargs.get('wcs_cdelt', 0.5) wcs_proj = kwargs.get('wcs_proj', 'AIT') map_type = kwargs.get('map_type', None) spatial_model = kwargs.get('spatial_model', 'PointSource') spatial_size = kwargs.get('spatial_size', 1E-2) obs_time_yr = kwargs.get('obs_time_yr', None) event_class = kwargs.get('event_class', 'P8R2_SOURCE_V6') min_counts = kwargs.get('min_counts', 3.0) ts_thresh = kwargs.get('ts_thresh', 25.0) nside = kwargs.get('hpx_nside', 16) output = kwargs.get('output', None) event_types = [['FRONT', 'BACK']] if sedshape == 'PowerLaw': fn = spectrum.PowerLaw([1E-13, -index], scale=1E3) elif sedshape == 'PLSuperExpCutoff': fn = spectrum.PLSuperExpCutoff([1E-13, -index, cutoff, curvindex], scale=1E3) elif sedshape == 'LogParabola': fn = spectrum.LogParabola([1E-13, -index, beta], scale=1E3) log_ebins = np.linspace(np.log10(emin), np.log10(emax), nbin + 1) ebins = 10**log_ebins ectr = np.exp(utils.edge_to_center(np.log(ebins))) c = SkyCoord(glon, glat, unit='deg', frame='galactic') if ltcube_filepath is None: if obs_time_yr is None: raise Exception('No observation time defined.') ltc = LTCube.create_from_obs_time(obs_time_yr * 365 * 24 * 3600.) else: ltc = LTCube.create(ltcube_filepath) if obs_time_yr is not None: ltc._counts *= obs_time_yr * 365 * \ 24 * 3600. / (ltc.tstop - ltc.tstart) gdiff = skymap.Map.create_from_fits(galdiff_filepath) gdiff_fit = None if galdiff_fit_filepath is not None: gdiff_fit = skymap.Map.create_from_fits(galdiff_fit_filepath) if isodiff_filepath is None: isodiff = utils.resolve_file_path('iso_%s_v06.txt' % event_class, search_dirs=[ os.path.join( '$FERMIPY_ROOT', 'data'), '$FERMI_DIFFUSE_DIR' ]) isodiff = os.path.expandvars(isodiff) else: isodiff = isodiff_filepath iso = np.loadtxt(isodiff, unpack=True) iso_fit = None if isodiff_fit_filepath is not None: iso_fit = np.loadtxt(isodiff_fit_filepath, unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, event_class, event_types, gdiff_fit=gdiff_fit, iso_fit=iso_fit, spatial_model=spatial_model, spatial_size=spatial_size) # Compute Maps map_diff_flux = None map_diff_npred = None map_int_flux = None map_int_npred = None map_nstep = 500 if map_type == 'hpx': hpx = HPX(nside, True, 'GAL', ebins=ebins) map_diff_flux = HpxMap(np.zeros((nbin, hpx.npix)), hpx) map_diff_npred = HpxMap(np.zeros((nbin, hpx.npix)), hpx) map_skydir = map_diff_flux.hpx.get_sky_dirs() for i in range(0, len(map_skydir), map_nstep): s = slice(i, i + map_nstep) o = scalc.diff_flux_threshold(map_skydir[s], fn, ts_thresh, min_counts) map_diff_flux.data[:, s] = o['flux'].T map_diff_npred.data[:, s] = o['npred'].T hpx = HPX(nside, True, 'GAL') map_int_flux = HpxMap(np.zeros((hpx.npix)), hpx) map_int_npred = HpxMap(np.zeros((hpx.npix)), hpx) map_skydir = map_int_flux.hpx.get_sky_dirs() for i in range(0, len(map_skydir), map_nstep): s = slice(i, i + map_nstep) o = scalc.int_flux_threshold(map_skydir[s], fn, ts_thresh, min_counts) map_int_flux.data[s] = o['flux'] map_int_npred.data[s] = o['npred'] elif map_type == 'wcs': wcs_shape = [wcs_npix, wcs_npix] wcs_size = wcs_npix * wcs_npix map_diff_flux = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj, ebins=ebins) map_diff_npred = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj, ebins=ebins) map_skydir = map_diff_flux.get_pixel_skydirs() for i in range(0, len(map_skydir), map_nstep): idx = np.unravel_index(np.arange(i, min(i + map_nstep, wcs_size)), wcs_shape) s = (slice(None), idx[1], idx[0]) o = scalc.diff_flux_threshold(map_skydir[slice(i, i + map_nstep)], fn, ts_thresh, min_counts) map_diff_flux.data[s] = o['flux'].T map_diff_npred.data[s] = o['npred'].T map_int_flux = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj) map_int_npred = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj) map_skydir = map_int_flux.get_pixel_skydirs() for i in range(0, len(map_skydir), map_nstep): idx = np.unravel_index(np.arange(i, min(i + map_nstep, wcs_size)), wcs_shape) s = (idx[1], idx[0]) o = scalc.int_flux_threshold(map_skydir[slice(i, i + map_nstep)], fn, ts_thresh, min_counts) map_int_flux.data[s] = o['flux'] map_int_npred.data[s] = o['npred'] o = scalc.diff_flux_threshold(c, fn, ts_thresh, min_counts) cols = [ Column(name='e_min', dtype='f8', data=scalc.ebins[:-1], unit='MeV'), Column(name='e_ref', dtype='f8', data=o['e_ref'], unit='MeV'), Column(name='e_max', dtype='f8', data=scalc.ebins[1:], unit='MeV'), Column(name='flux', dtype='f8', data=o['flux'], unit='ph / (cm2 s)'), Column(name='eflux', dtype='f8', data=o['eflux'], unit='MeV / (cm2 s)'), Column(name='dnde', dtype='f8', data=o['dnde'], unit='ph / (MeV cm2 s)'), Column(name='e2dnde', dtype='f8', data=o['e2dnde'], unit='MeV / (cm2 s)'), Column(name='npred', dtype='f8', data=o['npred'], unit='ph') ] tab_diff = Table(cols) cols = [ Column(name='index', dtype='f8'), Column(name='e_min', dtype='f8', unit='MeV'), Column(name='e_ref', dtype='f8', unit='MeV'), Column(name='e_max', dtype='f8', unit='MeV'), Column(name='flux', dtype='f8', unit='ph / (cm2 s)'), Column(name='eflux', dtype='f8', unit='MeV / (cm2 s)'), Column(name='dnde', dtype='f8', unit='ph / (MeV cm2 s)'), Column(name='e2dnde', dtype='f8', unit='MeV / (cm2 s)'), Column(name='npred', dtype='f8', unit='ph'), Column(name='ebin_e_min', dtype='f8', unit='MeV', shape=(len(ectr), )), Column(name='ebin_e_ref', dtype='f8', unit='MeV', shape=(len(ectr), )), Column(name='ebin_e_max', dtype='f8', unit='MeV', shape=(len(ectr), )), Column(name='ebin_flux', dtype='f8', unit='ph / (cm2 s)', shape=(len(ectr), )), Column(name='ebin_eflux', dtype='f8', unit='MeV / (cm2 s)', shape=(len(ectr), )), Column(name='ebin_dnde', dtype='f8', unit='ph / (MeV cm2 s)', shape=(len(ectr), )), Column(name='ebin_e2dnde', dtype='f8', unit='MeV / (cm2 s)', shape=(len(ectr), )), Column(name='ebin_npred', dtype='f8', unit='ph', shape=(len(ectr), )) ] cols_ebounds = [ Column(name='E_MIN', dtype='f8', unit='MeV', data=ebins[:-1]), Column(name='E_MAX', dtype='f8', unit='MeV', data=ebins[1:]), ] tab_int = Table(cols) tab_ebounds = Table(cols_ebounds) index = np.linspace(1.0, 5.0, 4 * 4 + 1) for g in index: fn = spectrum.PowerLaw([1E-13, -g], scale=10**3.5) o = scalc.int_flux_threshold(c, fn, ts_thresh, 3.0) row = [g] for colname in tab_int.columns: if colname == 'index': continue if 'ebin' in colname: row += [o['bins'][colname.replace('ebin_', '')]] else: row += [o[colname]] tab_int.add_row(row) hdulist = fits.HDUList() hdulist.append(fits.table_to_hdu(tab_diff)) hdulist.append(fits.table_to_hdu(tab_int)) hdulist.append(fits.table_to_hdu(tab_ebounds)) hdulist[1].name = 'DIFF_FLUX' hdulist[2].name = 'INT_FLUX' hdulist[3].name = 'EBOUNDS' if map_type is not None: hdu = map_diff_flux.create_image_hdu() hdu.name = 'MAP_DIFF_FLUX' hdulist.append(hdu) hdu = map_diff_npred.create_image_hdu() hdu.name = 'MAP_DIFF_NPRED' hdulist.append(hdu) hdu = map_int_flux.create_image_hdu() hdu.name = 'MAP_INT_FLUX' hdulist.append(hdu) hdu = map_int_npred.create_image_hdu() hdu.name = 'MAP_INT_NPRED' hdulist.append(hdu) hdulist.writeto(output, clobber=True)
def run_flux_sensitivity(**kwargs): index = kwargs.get('index', 2.0) sedshape = kwargs.get('sedshape', 'PowerLaw') cutoff = kwargs.get('cutoff', 1e3) curvindex = kwargs.get('curvindex', 1.0) beta = kwargs.get('beta', 0.0) dmmass = kwargs.get('DMmass', 100.0) dmchannel = kwargs.get('DMchannel', 'bb') emin = kwargs.get('emin', 10**1.5) emax = kwargs.get('emax', 10**6.0) nbin = kwargs.get('nbin', 18) glon = kwargs.get('glon', 0.0) glat = kwargs.get('glat', 0.0) ltcube_filepath = kwargs.get('ltcube', None) galdiff_filepath = kwargs.get('galdiff', None) isodiff_filepath = kwargs.get('isodiff', None) galdiff_fit_filepath = kwargs.get('galdiff_fit', None) isodiff_fit_filepath = kwargs.get('isodiff_fit', None) wcs_npix = kwargs.get('wcs_npix', 40) wcs_cdelt = kwargs.get('wcs_cdelt', 0.5) wcs_proj = kwargs.get('wcs_proj', 'AIT') map_type = kwargs.get('map_type', None) spatial_model = kwargs.get('spatial_model', 'PointSource') spatial_size = kwargs.get('spatial_size', 1E-2) obs_time_yr = kwargs.get('obs_time_yr', None) event_class = kwargs.get('event_class', 'P8R2_SOURCE_V6') min_counts = kwargs.get('min_counts', 3.0) ts_thresh = kwargs.get('ts_thresh', 25.0) nside = kwargs.get('hpx_nside', 16) output = kwargs.get('output', None) event_types = [['FRONT', 'BACK']] if sedshape == 'PowerLaw': fn = spectrum.PowerLaw([1E-13, -index], scale=1E3) elif sedshape == 'PLSuperExpCutoff': fn = spectrum.PLSuperExpCutoff( [1E-13, -index, cutoff, curvindex], scale=1E3) elif sedshape == 'LogParabola': fn = spectrum.LogParabola([1E-13, -index, beta], scale=1E3) elif sedshape == 'DM': fn = spectrum.DMFitFunction([1E-26, dmmass], chan=dmchannel) log_ebins = np.linspace(np.log10(emin), np.log10(emax), nbin + 1) ebins = 10**log_ebins ectr = np.exp(utils.edge_to_center(np.log(ebins))) c = SkyCoord(glon, glat, unit='deg', frame='galactic') if ltcube_filepath is None: if obs_time_yr is None: raise Exception('No observation time defined.') ltc = LTCube.create_from_obs_time(obs_time_yr * 365 * 24 * 3600.) else: ltc = LTCube.create(ltcube_filepath) if obs_time_yr is not None: ltc._counts *= obs_time_yr * 365 * \ 24 * 3600. / (ltc.tstop - ltc.tstart) gdiff = skymap.Map.create_from_fits(galdiff_filepath) gdiff_fit = None if galdiff_fit_filepath is not None: gdiff_fit = skymap.Map.create_from_fits(galdiff_fit_filepath) if isodiff_filepath is None: isodiff = utils.resolve_file_path('iso_%s_v06.txt' % event_class, search_dirs=[os.path.join('$FERMIPY_ROOT', 'data'), '$FERMI_DIFFUSE_DIR']) isodiff = os.path.expandvars(isodiff) else: isodiff = isodiff_filepath iso = np.loadtxt(isodiff, unpack=True) iso_fit = None if isodiff_fit_filepath is not None: iso_fit = np.loadtxt(isodiff_fit_filepath, unpack=True) scalc = SensitivityCalc(gdiff, iso, ltc, ebins, event_class, event_types, gdiff_fit=gdiff_fit, iso_fit=iso_fit, spatial_model=spatial_model, spatial_size=spatial_size) # Compute Maps map_diff_flux = None map_diff_npred = None map_int_flux = None map_int_npred = None map_nstep = 500 if map_type == 'hpx': hpx = HPX(nside, True, 'GAL', ebins=ebins) map_diff_flux = HpxMap(np.zeros((nbin, hpx.npix)), hpx) map_diff_npred = HpxMap(np.zeros((nbin, hpx.npix)), hpx) map_skydir = map_diff_flux.hpx.get_sky_dirs() for i in range(0, len(map_skydir), map_nstep): s = slice(i, i + map_nstep) o = scalc.diff_flux_threshold( map_skydir[s], fn, ts_thresh, min_counts) map_diff_flux.data[:, s] = o['flux'].T map_diff_npred.data[:, s] = o['npred'].T hpx = HPX(nside, True, 'GAL') map_int_flux = HpxMap(np.zeros((hpx.npix)), hpx) map_int_npred = HpxMap(np.zeros((hpx.npix)), hpx) map_skydir = map_int_flux.hpx.get_sky_dirs() for i in range(0, len(map_skydir), map_nstep): s = slice(i, i + map_nstep) o = scalc.int_flux_threshold( map_skydir[s], fn, ts_thresh, min_counts) map_int_flux.data[s] = o['flux'] map_int_npred.data[s] = o['npred'] elif map_type == 'wcs': wcs_shape = [wcs_npix, wcs_npix] wcs_size = wcs_npix * wcs_npix map_diff_flux = Map.create( c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj, ebins=ebins) map_diff_npred = Map.create( c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj, ebins=ebins) map_skydir = map_diff_flux.get_pixel_skydirs() for i in range(0, len(map_skydir), map_nstep): idx = np.unravel_index( np.arange(i, min(i + map_nstep, wcs_size)), wcs_shape) s = (slice(None), idx[1], idx[0]) o = scalc.diff_flux_threshold( map_skydir[slice(i, i + map_nstep)], fn, ts_thresh, min_counts) map_diff_flux.data[s] = o['flux'].T map_diff_npred.data[s] = o['npred'].T map_int_flux = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj) map_int_npred = Map.create(c, wcs_cdelt, wcs_shape, 'GAL', wcs_proj) map_skydir = map_int_flux.get_pixel_skydirs() for i in range(0, len(map_skydir), map_nstep): idx = np.unravel_index( np.arange(i, min(i + map_nstep, wcs_size)), wcs_shape) s = (idx[1], idx[0]) o = scalc.int_flux_threshold( map_skydir[slice(i, i + map_nstep)], fn, ts_thresh, min_counts) map_int_flux.data[s] = o['flux'] map_int_npred.data[s] = o['npred'] o = scalc.diff_flux_threshold(c, fn, ts_thresh, min_counts) cols = [Column(name='e_min', dtype='f8', data=scalc.ebins[:-1], unit='MeV'), Column(name='e_ref', dtype='f8', data=o['e_ref'], unit='MeV'), Column(name='e_max', dtype='f8', data=scalc.ebins[1:], unit='MeV'), Column(name='flux', dtype='f8', data=o[ 'flux'], unit='ph / (cm2 s)'), Column(name='eflux', dtype='f8', data=o[ 'eflux'], unit='MeV / (cm2 s)'), Column(name='dnde', dtype='f8', data=o['dnde'], unit='ph / (MeV cm2 s)'), Column(name='e2dnde', dtype='f8', data=o['e2dnde'], unit='MeV / (cm2 s)'), Column(name='npred', dtype='f8', data=o['npred'], unit='ph')] tab_diff = Table(cols) cols = [Column(name='index', dtype='f8'), Column(name='e_min', dtype='f8', unit='MeV'), Column(name='e_ref', dtype='f8', unit='MeV'), Column(name='e_max', dtype='f8', unit='MeV'), Column(name='flux', dtype='f8', unit='ph / (cm2 s)'), Column(name='eflux', dtype='f8', unit='MeV / (cm2 s)'), Column(name='dnde', dtype='f8', unit='ph / (MeV cm2 s)'), Column(name='e2dnde', dtype='f8', unit='MeV / (cm2 s)'), Column(name='npred', dtype='f8', unit='ph'), Column(name='ebin_e_min', dtype='f8', unit='MeV', shape=(len(ectr),)), Column(name='ebin_e_ref', dtype='f8', unit='MeV', shape=(len(ectr),)), Column(name='ebin_e_max', dtype='f8', unit='MeV', shape=(len(ectr),)), Column(name='ebin_flux', dtype='f8', unit='ph / (cm2 s)', shape=(len(ectr),)), Column(name='ebin_eflux', dtype='f8', unit='MeV / (cm2 s)', shape=(len(ectr),)), Column(name='ebin_dnde', dtype='f8', unit='ph / (MeV cm2 s)', shape=(len(ectr),)), Column(name='ebin_e2dnde', dtype='f8', unit='MeV / (cm2 s)', shape=(len(ectr),)), Column(name='ebin_npred', dtype='f8', unit='ph', shape=(len(ectr),))] cols_ebounds = [Column(name='E_MIN', dtype='f8', unit='MeV', data=ebins[:-1]), Column(name='E_MAX', dtype='f8', unit='MeV', data=ebins[1:]), ] tab_int = Table(cols) tab_ebounds = Table(cols_ebounds) index = np.linspace(1.0, 5.0, 4 * 4 + 1) for g in index: fn = spectrum.PowerLaw([1E-13, -g], scale=10**3.5) o = scalc.int_flux_threshold(c, fn, ts_thresh, 3.0) row = [g] for colname in tab_int.columns: if colname == 'index': continue if 'ebin' in colname: row += [o['bins'][colname.replace('ebin_', '')]] else: row += [o[colname]] tab_int.add_row(row) hdulist = fits.HDUList() hdulist.append(fits.table_to_hdu(tab_diff)) hdulist.append(fits.table_to_hdu(tab_int)) hdulist.append(fits.table_to_hdu(tab_ebounds)) hdulist[1].name = 'DIFF_FLUX' hdulist[2].name = 'INT_FLUX' hdulist[3].name = 'EBOUNDS' if map_type is not None: hdu = map_diff_flux.create_image_hdu() hdu.name = 'MAP_DIFF_FLUX' hdulist.append(hdu) hdu = map_diff_npred.create_image_hdu() hdu.name = 'MAP_DIFF_NPRED' hdulist.append(hdu) hdu = map_int_flux.create_image_hdu() hdu.name = 'MAP_INT_FLUX' hdulist.append(hdu) hdu = map_int_npred.create_image_hdu() hdu.name = 'MAP_INT_NPRED' hdulist.append(hdu) hdulist.writeto(output, overwrite=True)