def _make_extension_fits(self, ext, filename, **kwargs): maps = { 'EXT_TOT_MAP': ext['ext_tot_map'], 'EXT_SRC_MAP': ext['ext_src_map'], 'EXT_BKG_MAP': ext['ext_bkg_map'], 'PTSRC_TOT_MAP': ext['ptsrc_tot_map'], 'PTSRC_SRC_MAP': ext['ptsrc_src_map'], 'PTSRC_BKG_MAP': ext['ptsrc_bkg_map'] } hdu_images = [] for k, v in sorted(maps.items()): if v is None: continue hdu_images += [v.make_hdu(k)] tab = fits_utils.dict_to_table(ext) hdu_data = fits.table_to_hdu(tab) hdu_data.name = 'EXT_DATA' if ext.get('tsmap'): hdus = [ext['tsmap'].make_hdu(hdu='PRIMARY')] else: hdus = [fits.PrimaryHDU()] hdus += [hdu_data] + hdu_images hdus[0].header['CONFIG'] = json.dumps(utils.tolist(ext['config'])) hdus[1].header['CONFIG'] = json.dumps(utils.tolist(ext['config'])) fits_utils.write_hdus(hdus, filename, keywords={'SRCNAME': ext['name']})
def _make_extension_fits(self, ext, filename, **kwargs): maps = {'EXT_TOT_MAP': ext['ext_tot_map'], 'EXT_SRC_MAP': ext['ext_src_map'], 'EXT_BKG_MAP': ext['ext_bkg_map'], 'PTSRC_TOT_MAP': ext['ptsrc_tot_map'], 'PTSRC_SRC_MAP': ext['ptsrc_src_map'], 'PTSRC_BKG_MAP': ext['ptsrc_bkg_map']} hdu_images = [] for k, v in sorted(maps.items()): if v is None: continue hdu_images += [v.make_hdu(k)] tab = fits_utils.dict_to_table(ext) hdu_data = fits.table_to_hdu(tab) hdu_data.name = 'EXT_DATA' if ext.get('tsmap'): hdus = [ext['tsmap'].make_hdu(hdu='PRIMARY')] else: hdus = [fits.PrimaryHDU()] hdus += [hdu_data] + hdu_images hdus[0].header['CONFIG'] = json.dumps(utils.tolist(ext['config'])) hdus[1].header['CONFIG'] = json.dumps(utils.tolist(ext['config'])) fits_utils.write_hdus(hdus, filename, keywords={'SRCNAME': ext['name']})
def clone_configs(basedir, base_configs, opt_configs, scripts, args=''): """ """ config = {} for c in base_configs: config = utils.merge_dict(config, yaml.load(open(c)), add_new_keys=True) scriptdir = os.path.abspath(os.path.join(basedir, 'scripts')) utils.mkdir(scriptdir) bash_scripts = [] for script_in in scripts: bash_script = """ cat $0 {scriptexe} --config={config} {args} """ if os.path.isfile(script_in): script = os.path.basename(script_in) scriptpath = os.path.join(scriptdir, script) scriptexe = 'python ' + scriptpath os.system('cp %s %s' % (script_in, scriptdir)) elif cmd_exists(script_in): scriptexe = script_in script = script_in else: raise Exception('Could not find script: %s' % script_in) bash_scripts.append((script, scriptexe, bash_script)) for name, vdict in opt_configs.items(): dirname = os.path.abspath(os.path.join(basedir, name)) utils.mkdir(dirname) cfgfile = os.path.join(dirname, 'config.yaml') for script_in, bash_script in zip(scripts, bash_scripts): runscript = os.path.splitext(bash_script[0])[0] + '.sh' runscript = os.path.join(dirname, runscript) with open(os.path.join(runscript), 'wt') as f: f.write(bash_script[2].format(source=name, scriptexe=bash_script[1], config=cfgfile, args=args)) if not config: continue c = copy.deepcopy(config) c = utils.merge_dict(c, vdict, add_new_keys=True) yaml.dump(utils.tolist(c), open(cfgfile, 'w'), default_flow_style=False)
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params, **kwargs): i, time = itime roi = copy.deepcopy(roi) config = copy.deepcopy(config) config['selection']['tmin'] = time[0] config['selection']['tmax'] = time[1] # create output directories labeled in MET vals outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1]) config['fileio']['outdir'] = os.path.join(workdir, outdir) config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1]) config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'], 'fermipy.log') utils.mkdir(config['fileio']['outdir']) yaml.dump(utils.tolist(config), open(os.path.join(config['fileio']['outdir'], 'config.yaml'), 'w')) xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml') try: from fermipy.gtanalysis import GTAnalysis gta = GTAnalysis(config, roi, loglevel=logging.DEBUG) gta.logger.info('Fitting time range %i %i' % (time[0], time[1])) gta.setup() except: print('Analysis failed in time range %i %i' % (time[0], time[1])) print(sys.exc_info()[0]) raise return {} gta._lck_params = lck_params # Recompute source map for source of interest and sources within 3 deg if gta.config['gtlike']['use_scaled_srcmap']: names = [s.name for s in gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir) if not s.diffuse] gta.reload_sources(names) # Write the current model gta.write_xml(xmlfile) # Optimize the model gta.optimize(skip=diff_sources, shape_ts_threshold=kwargs.get('shape_ts_threshold')) fit_results = _fit_lc(gta, name, **kwargs) gta.write_xml('fit_model_final.xml') srcmodel = copy.deepcopy(gta.get_src_model(name)) numfree = gta.get_free_param_vector().count(True) max_ts_thresholds = [None, 4, 9] for max_ts in max_ts_thresholds: if max_ts is not None: gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name]) # rerun fit using params from full time (constant) fit using same # param vector as the successful fit to get loglike specname, spectrum = const_spectrum gta.set_source_spectrum(name, spectrum_type=specname, spectrum_pars=spectrum, update_source=False) gta.free_source(name, free=False) const_fit_results = gta.fit() if not const_fit_results['fit_success']: continue const_srcmodel = gta.get_src_model(name) # rerun using shape fixed to full time fit # for the fixed-shape lightcurve gta.free_source(name, pars='norm') fixed_fit_results = gta.fit() if not fixed_fit_results['fit_success']: continue fixed_srcmodel = gta.get_src_model(name) break # special lc output o = {'flux_const': const_srcmodel['flux'], 'loglike_const': const_fit_results['loglike'], 'fit_success': fit_results['fit_success'], 'fit_success_fixed': fixed_fit_results['fit_success'], 'fit_quality': fit_results['fit_quality'], 'fit_status': fit_results['fit_status'], 'num_free_params': numfree, 'config': config} # full flux output if fit_results['fit_success'] == 1: for k in defaults.source_flux_output.keys(): if not k in srcmodel: continue o[k] = srcmodel[k] o[k+'_fixed'] = fixed_srcmodel[k] gta.logger.info('Finished time range %i %i' % (time[0], time[1])) return o
def _make_lc(self, name, **kwargs): # make array of time values in MET if kwargs['time_bins']: times = np.array(kwargs['time_bins']) elif kwargs['nbins']: times = np.linspace(self.tmin, self.tmax, kwargs['nbins'] + 1) else: times = np.arange(self.tmin, self.tmax, kwargs['binsz']) o = self._create_lc_dict(name, times) o['config'] = kwargs diff_sources = [s.name for s in self.roi.sources if s.diffuse] skydir = self.roi[name].skydir if kwargs.get('free_radius', None) is not None: kwargs['free_sources'] += [s.name for s in self.roi.get_sources(skydir=skydir, distance=kwargs[ 'free_radius'], exclude=diff_sources)] for i, time in enumerate(zip(times[:-1], times[1:])): self.logger.info('Fitting time range %i %i', time[0], time[1]) config = copy.deepcopy(self.config) config['selection']['tmin'] = time[0] config['selection']['tmax'] = time[1] config['ltcube']['use_local_ltcube'] = kwargs['use_local_ltcube'] config['model']['diffuse_dir'] = [self.workdir] if config['components'] is None: config['components'] = [] for j, c in enumerate(self.components): if len(config['components']) <= j: config['components'] += [{}] data_cfg = {'evfile': c.files['ft1'], 'scfile': c.data_files['scfile'], 'ltcube': None} config['components'][j] = \ utils.merge_dict(config['components'][j], {'data': data_cfg}, add_new_keys=True) # create output directories labeled in MET vals outdir = 'lightcurve_%.0f_%.0f' % (time[0], time[1]) config['fileio']['outdir'] = os.path.join(self.workdir, outdir) utils.mkdir(config['fileio']['outdir']) yaml.dump(utils.tolist(config), open(os.path.join(config['fileio']['outdir'], 'config.yaml'), 'w')) xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml') # Make a copy of the source maps. TODO: Implement a # correction to account for the difference in exposure for # each time bin. # for c in self.components: # shutil.copy(c._files['srcmap'],config['fileio']['outdir']) try: gta = self.clone(config, loglevel=logging.DEBUG) gta.setup() except: self.logger.warning('Analysis failed in time range %i %i', time[0], time[1]) continue # Write the current model gta.write_xml(xmlfile) # Optimize the model (skip diffuse?) gta.optimize(skip=diff_sources) fit_results = self._fit_lc(gta, name, **kwargs) gta.write_xml('fit_model_final.xml') output = gta.get_src_model(name) if fit_results['fit_success'] == 1: for k in defaults.source_flux_output.keys(): if not k in output: continue if (isinstance(output[k], np.ndarray) and o[k][i].shape != output[k].shape): self.logger.warning( 'Incompatible shape for column %s', k) continue o[k][i] = output[k] self.logger.info('Finished time range %i %i', time[0], time[1]) src = self.roi.get_source_by_name(name) return o
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params, **kwargs): i, time = itime roi = copy.deepcopy(roi) config = copy.deepcopy(config) config['selection']['tmin'] = time[0] config['selection']['tmax'] = time[1] # create output directories labeled in MET vals outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1]) config['fileio']['outdir'] = os.path.join(workdir, outdir) config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1]) config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'], 'fermipy.log') utils.mkdir(config['fileio']['outdir']) yaml.dump(utils.tolist(config), open(os.path.join(config['fileio']['outdir'], 'config.yaml'), 'w')) xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml') try: from fermipy.gtanalysis import GTAnalysis gta = GTAnalysis(config, roi, loglevel=logging.DEBUG) gta.logger.info('Fitting time range %i %i' % (time[0], time[1])) gta.setup() except: print('Analysis failed in time range %i %i' % (time[0], time[1])) print(sys.exc_info()[0]) raise return {} gta._lck_params = lck_params # Recompute source map for source of interest and sources within 3 deg if gta.config['gtlike']['use_scaled_srcmap']: names = [s.name for s in gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir) if not s.diffuse] gta.reload_sources(names) # Write the current model gta.write_xml(xmlfile) # Optimize the model gta.optimize(skip=diff_sources, shape_ts_threshold=kwargs.get('shape_ts_threshold')) fit_results = _fit_lc(gta, name, **kwargs) gta.write_xml('fit_model_final.xml') srcmodel = copy.deepcopy(gta.get_src_model(name)) numfree = gta.get_free_param_vector().count(True) const_srcmodel = gta.get_src_model(name).copy() fixed_fit_results = fit_results.copy() fixed_srcmodel = gta.get_src_model(name).copy() fixed_fit_results['fit_success'],fixed_srcmodel['fit_success'] = [False,False] fixed_fit_results['fit_quality'],fixed_srcmodel['fit_quality'] = [0,0] max_ts_thresholds = [None, 4, 9, 16, 25] for max_ts in max_ts_thresholds: if max_ts is not None: gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name]) # rerun fit using params from full time (constant) fit using same # param vector as the successful fit to get loglike specname, spectrum = const_spectrum gta.set_source_spectrum(name, spectrum_type=specname, spectrum_pars=spectrum, update_source=False) gta.free_source(name, free=False) const_fit_results = gta.fit() if not const_fit_results['fit_success']: continue const_srcmodel = gta.get_src_model(name) # rerun using shape fixed to full time fit # for the fixed-shape lightcurve gta.free_source(name, pars='norm') fixed_fit_results = gta.fit() if not fixed_fit_results['fit_success']: continue fixed_srcmodel = gta.get_src_model(name) break # special lc output o = {'flux_const': const_srcmodel['flux'], 'loglike_const': const_fit_results['loglike'], 'fit_success': fit_results['fit_success'], 'fit_success_fixed': fixed_fit_results['fit_success'], 'fit_quality': fit_results['fit_quality'], 'fit_status': fit_results['fit_status'], 'num_free_params': numfree, 'config': config} # full flux output if fit_results['fit_success'] == 1: for k in defaults.source_flux_output.keys(): if not k in srcmodel: continue o[k] = srcmodel[k] o[k+'_fixed'] = fixed_srcmodel[k] gta.logger.info('Finished time range %i %i' % (time[0], time[1])) return o
from fermipy.utils import tolist import yaml import numpy as np gtutils.init_function_pars() par_names = gtutils.FUNCTION_PAR_NAMES o = {} for k, v in par_names.items(): o.setdefault(k,{}) o[k]['par_names'] = v o[k]['norm_par'] = gtutils.FUNCTION_NORM_PARS[k] o[k]['defaults'] = gtutils.FUNCTION_DEFAULT_PARS[k] for pname, p in o[k]['defaults'].items(): o[k]['defaults'][pname]['error'] = np.nan o['CompositeSource'] = {'defaults' : {}, 'norm_par' : None, 'par_names': [] } modelfile = os.path.join('$FERMIPY_ROOT', 'data', 'models.yaml') yaml.dump(tolist(o), open(os.path.expandvars(modelfile), 'w'))#,default_flow_style=False)
import os from fermipy import gtutils from fermipy.utils import tolist import yaml import numpy as np gtutils.init_function_pars() par_names = gtutils.FUNCTION_PAR_NAMES o = {} for k, v in par_names.items(): o.setdefault(k, {}) o[k]['par_names'] = v o[k]['norm_par'] = gtutils.FUNCTION_NORM_PARS[k] o[k]['defaults'] = gtutils.FUNCTION_DEFAULT_PARS[k] for pname, p in o[k]['defaults'].items(): o[k]['defaults'][pname]['error'] = np.nan o['CompositeSource'] = {'defaults': {}, 'norm_par': None, 'par_names': []} modelfile = os.path.join('$FERMIPY_DATA_DIR', 'models.yaml') yaml.dump(tolist(o), open(os.path.expandvars(modelfile), 'w')) #,default_flow_style=False)
# else: # name = target # config['selection']['target'] = name print name dirname = os.path.join(basedir,name) utils.mkdir(dirname) script = os.path.basename(args.script) scriptpath = os.path.abspath(os.path.join(dirname,script)) cfgfile = os.path.abspath(os.path.join(dirname,'config.yaml')) os.system('ln -sf %s %s'%(os.path.abspath(os.path.join(scriptdir,script)), scriptpath)) runscript = os.path.abspath(os.path.join(dirname,os.path.splitext(script)[0] + '.sh')) with open(os.path.join(runscript),'wt') as f: f.write(bash_script.format(source=name,config=cfgfile, script=scriptpath)) if not config: continue c = copy.deepcopy(config) c = utils.merge_dict(c,v,add_new_keys=True) yaml.dump(utils.tolist(c),open(cfgfile,'w'),default_flow_style=False)