def _make_ts_cube(self, prefix, **kwargs): skywcs = kwargs.get('wcs', self.geom.wcs) npix = kwargs.get('npix', self.npix) galactic = wcs_utils.is_galactic(skywcs) ref_skydir = wcs_utils.wcs_to_skydir(skywcs) refdir = pyLike.SkyDir(ref_skydir.ra.deg, ref_skydir.dec.deg) pixsize = np.abs(skywcs.wcs.cdelt[0]) skyproj = pyLike.FitScanner.buildSkyProj(str("AIT"), refdir, pixsize, npix, galactic) src_dict = copy.deepcopy(kwargs.setdefault('model', {})) src_dict = {} if src_dict is None else src_dict xpix, ypix = (np.round( (self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) skydir = wcs_utils.pix_to_skydir(xpix, ypix, skywcs) src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) src_dict.setdefault('Prefactor', 1E-13) src_dict['name'] = 'tscube_testsource' src = Source.create_from_dict(src_dict) modelname = utils.create_model_name(src) optFactory = pyLike.OptimizerFactory_instance() optObject = optFactory.create(str("MINUIT"), self.components[0].like.logLike) pylike_src = self.components[0]._create_source(src) fitScanner = pyLike.FitScanner(self.like.composite, optObject, skyproj, npix, npix) pylike_src.spectrum().normPar().setBounds(0, 1E6) fitScanner.setTestSource(pylike_src) self.logger.info("Running tscube") outfile = utils.format_filename(self.config['fileio']['workdir'], 'tscube.fits', prefix=[prefix]) try: fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'], kwargs['norm_sigma'], kwargs['cov_scale_bb'], kwargs['cov_scale'], kwargs['tol'], kwargs['max_iter'], kwargs['tol_type'], kwargs['remake_test_source'], kwargs['st_scan_level'], str(''), kwargs['init_lambda']) except Exception: fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'], kwargs['norm_sigma'], kwargs['cov_scale_bb'], kwargs['cov_scale'], kwargs['tol'], kwargs['max_iter'], kwargs['tol_type'], kwargs['remake_test_source'], kwargs['st_scan_level']) self.logger.info("Writing FITS output") fitScanner.writeFitsFile(str(outfile), str("gttscube")) convert_tscube(str(outfile), str(outfile)) tscube = castro.TSCube.create_from_fits(outfile) ts_map = tscube.tsmap norm_map = tscube.normmap npred_map = copy.deepcopy(norm_map) npred_map.data *= tscube.refSpec.ref_npred.sum() amp_map = copy.deepcopy(norm_map) amp_map.data *= src_dict['Prefactor'] sqrt_ts_map = copy.deepcopy(ts_map) sqrt_ts_map.data[...] = np.abs(sqrt_ts_map.data)**0.5 o = { 'name': utils.join_strings([prefix, modelname]), 'src_dict': copy.deepcopy(src_dict), 'file': os.path.basename(outfile), 'ts': ts_map, 'sqrt_ts': sqrt_ts_map, 'npred': npred_map, 'amplitude': amp_map, 'config': kwargs, 'tscube': tscube } if not kwargs['write_fits']: os.remove(outfile) os['file'] = None self.logger.info("Done") return o
def _make_residual_map_wcs(self, prefix, **kwargs): src_dict = copy.deepcopy(kwargs.setdefault('model', {})) exclude = kwargs.setdefault('exclude', None) loge_bounds = kwargs.setdefault('loge_bounds', None) use_weights = kwargs.setdefault('use_weights', False) if loge_bounds: if len(loge_bounds) != 2: raise Exception('Wrong size of loge_bounds array.') loge_bounds[0] = (loge_bounds[0] if loge_bounds[0] is not None else self.log_energies[0]) loge_bounds[1] = (loge_bounds[1] if loge_bounds[1] is not None else self.log_energies[-1]) else: loge_bounds = [self.log_energies[0], self.log_energies[-1]] # Put the test source at the pixel closest to the ROI center xpix, ypix = (np.round( (self.npix[0] - 1.0) / 2.), np.round((self.npix[1] - 1.0) / 2.)) cpix = np.array([xpix, ypix]) geom = self.geom.to_image() skywcs = self.geom.wcs skydir = wcs_utils.pix_to_skydir(cpix[0], cpix[1], skywcs) if src_dict is None: src_dict = {} src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) kernel = None if src_dict['SpatialModel'] == 'Gaussian': kernel = utils.make_gaussian_kernel(src_dict['SpatialWidth'], cdelt=self.binsz, npix=101) kernel /= np.sum(kernel) cpix = [50, 50] self.add_source('residmap_testsource', src_dict, free=True, init_source=False, save_source_maps=False) src = self.roi.get_source_by_name('residmap_testsource') modelname = utils.create_model_name(src) mmst = np.zeros(self.npix[::-1]) cmst = np.zeros(self.npix[::-1]) emst = np.zeros(self.npix[::-1]) sm = get_source_kernel(self, 'residmap_testsource', kernel) ts = np.zeros(self.npix[::-1]) sigma = np.zeros(self.npix[::-1]) excess = np.zeros(self.npix[::-1]) self.delete_source('residmap_testsource') for i, c in enumerate(self.components): imin = utils.val_to_edge(c.log_energies, loge_bounds[0])[0] imax = utils.val_to_edge(c.log_energies, loge_bounds[1])[0] mc = c.model_counts_map(exclude=exclude).data.astype('float') cc = c.counts_map().data.astype('float') ec = np.ones(mc.shape) if use_weights: wmap = c.weight_map().data mask = np.where(wmap > 0, 1., 0.) else: wmap = None mask = None ccs = convolve_map(cc, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) mcs = convolve_map(mc, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) ecs = convolve_map(ec, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) cms = np.sum(ccs, axis=0) mms = np.sum(mcs, axis=0) ems = np.sum(ecs, axis=0) cmst += cms mmst += mms emst += ems # cts = 2.0 * (poisson_lnl(cms, cms) - poisson_lnl(cms, mms)) excess += cms - mms ts = 2.0 * (poisson_lnl(cmst, cmst) - poisson_lnl(cmst, mmst)) sigma = np.sqrt(ts) sigma[excess < 0] *= -1 emst /= np.max(emst) sigma_map = WcsNDMap(geom, sigma) model_map = WcsNDMap(geom, mmst / emst) data_map = WcsNDMap(geom, cmst / emst) excess_map = WcsNDMap(geom, excess / emst) o = { 'name': utils.join_strings([prefix, modelname]), 'projtype': 'WCS', 'file': None, 'sigma': sigma_map, 'model': model_map, 'data': data_map, 'excess': excess_map, 'mask': mask, 'config': kwargs } return o
def _make_ts_cube(self, prefix, **kwargs): skywcs = kwargs.get('wcs', self.geom.wcs) npix = kwargs.get('npix', self.npix) galactic = wcs_utils.is_galactic(skywcs) ref_skydir = wcs_utils.wcs_to_skydir(skywcs) refdir = pyLike.SkyDir(ref_skydir.ra.deg, ref_skydir.dec.deg) pixsize = np.abs(skywcs.wcs.cdelt[0]) skyproj = pyLike.FitScanner.buildSkyProj(str("AIT"), refdir, pixsize, npix, galactic) src_dict = copy.deepcopy(kwargs.setdefault('model', {})) src_dict = {} if src_dict is None else src_dict xpix, ypix = (np.round((self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) skydir = wcs_utils.pix_to_skydir(xpix, ypix, skywcs) src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) src_dict.setdefault('Prefactor', 1E-13) src_dict['name'] = 'tscube_testsource' src = Source.create_from_dict(src_dict) modelname = utils.create_model_name(src) optFactory = pyLike.OptimizerFactory_instance() optObject = optFactory.create(str("MINUIT"), self.components[0].like.logLike) pylike_src = self.components[0]._create_source(src) fitScanner = pyLike.FitScanner(self.like.composite, optObject, skyproj, npix, npix) pylike_src.spectrum().normPar().setBounds(0, 1E6) fitScanner.setTestSource(pylike_src) self.logger.info("Running tscube") outfile = utils.format_filename(self.config['fileio']['workdir'], 'tscube.fits', prefix=[prefix]) try: fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'], kwargs['norm_sigma'], kwargs['cov_scale_bb'], kwargs['cov_scale'], kwargs['tol'], kwargs['max_iter'], kwargs['tol_type'], kwargs['remake_test_source'], kwargs['st_scan_level'], str(''), kwargs['init_lambda']) except Exception: fitScanner.run_tscube(True, kwargs['do_sed'], kwargs['nnorm'], kwargs['norm_sigma'], kwargs['cov_scale_bb'], kwargs['cov_scale'], kwargs['tol'], kwargs['max_iter'], kwargs['tol_type'], kwargs['remake_test_source'], kwargs['st_scan_level']) self.logger.info("Writing FITS output") fitScanner.writeFitsFile(str(outfile), str("gttscube")) convert_tscube(str(outfile), str(outfile)) tscube = castro.TSCube.create_from_fits(outfile) ts_map = tscube.tsmap norm_map = tscube.normmap npred_map = copy.deepcopy(norm_map) npred_map.data *= tscube.refSpec.ref_npred.sum() amp_map = copy.deepcopy(norm_map) amp_map.data *= src_dict['Prefactor'] sqrt_ts_map = copy.deepcopy(ts_map) sqrt_ts_map.data[...] = np.abs(sqrt_ts_map.data)**0.5 o = {'name': utils.join_strings([prefix, modelname]), 'src_dict': copy.deepcopy(src_dict), 'file': os.path.basename(outfile), 'ts': ts_map, 'sqrt_ts': sqrt_ts_map, 'npred': npred_map, 'amplitude': amp_map, 'config': kwargs, 'tscube': tscube } if not kwargs['write_fits']: os.remove(outfile) os['file'] = None self.logger.info("Done") return o
def _make_residual_map_wcs(self, prefix, **kwargs): src_dict = copy.deepcopy(kwargs.setdefault('model', {})) exclude = kwargs.setdefault('exclude', None) loge_bounds = kwargs.setdefault('loge_bounds', None) use_weights = kwargs.setdefault('use_weights', False) if loge_bounds: if len(loge_bounds) != 2: raise Exception('Wrong size of loge_bounds array.') loge_bounds[0] = (loge_bounds[0] if loge_bounds[0] is not None else self.log_energies[0]) loge_bounds[1] = (loge_bounds[1] if loge_bounds[1] is not None else self.log_energies[-1]) else: loge_bounds = [self.log_energies[0], self.log_energies[-1]] # Put the test source at the pixel closest to the ROI center xpix, ypix = (np.round((self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) cpix = np.array([xpix, ypix]) geom = self.geom.to_image() skywcs = self.geom.wcs skydir = wcs_utils.pix_to_skydir(cpix[0], cpix[1], skywcs) if src_dict is None: src_dict = {} src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) kernel = None if src_dict['SpatialModel'] == 'Gaussian': kernel = utils.make_gaussian_kernel(src_dict['SpatialWidth'], cdelt=self.components[0].binsz, npix=101) kernel /= np.sum(kernel) cpix = [50, 50] self.add_source('residmap_testsource', src_dict, free=True, init_source=False, save_source_maps=False) src = self.roi.get_source_by_name('residmap_testsource') modelname = utils.create_model_name(src) npix = self.components[0].npix mmst = np.zeros((npix, npix)) cmst = np.zeros((npix, npix)) emst = np.zeros((npix, npix)) sm = get_source_kernel(self, 'residmap_testsource', kernel) ts = np.zeros((npix, npix)) sigma = np.zeros((npix, npix)) excess = np.zeros((npix, npix)) self.delete_source('residmap_testsource') for i, c in enumerate(self.components): imin = utils.val_to_edge(c.log_energies, loge_bounds[0])[0] imax = utils.val_to_edge(c.log_energies, loge_bounds[1])[0] mc = c.model_counts_map(exclude=exclude).data.astype('float') cc = c.counts_map().data.astype('float') ec = np.ones(mc.shape) if use_weights: wmap = c.weight_map().data mask = np.where(wmap > 0, 1., 0.) else: wmap = None mask = None ccs = convolve_map( cc, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) mcs = convolve_map( mc, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) ecs = convolve_map( ec, sm[i], cpix, imin=imin, imax=imax, wmap=wmap) cms = np.sum(ccs, axis=0) mms = np.sum(mcs, axis=0) ems = np.sum(ecs, axis=0) cmst += cms mmst += mms emst += ems # cts = 2.0 * (poisson_lnl(cms, cms) - poisson_lnl(cms, mms)) excess += cms - mms ts = 2.0 * (poisson_lnl(cmst, cmst) - poisson_lnl(cmst, mmst)) sigma = np.sqrt(ts) sigma[excess < 0] *= -1 emst /= np.max(emst) sigma_map = WcsNDMap(geom, sigma) model_map = WcsNDMap(geom, mmst / emst) data_map = WcsNDMap(geom, cmst / emst) excess_map = WcsNDMap(geom, excess / emst) o = {'name': utils.join_strings([prefix, modelname]), 'projtype': 'WCS', 'file': None, 'sigma': sigma_map, 'model': model_map, 'data': data_map, 'excess': excess_map, 'mask': mask, 'config': kwargs} return o
def _tsmap_pylike(self, prefix, **kwargs): """Evaluate the TS for an additional source component at each point in the ROI. This is the brute force implementation of TS map generation that runs a full pyLikelihood fit at each point in the ROI.""" logLike0 = -self.like() self.logger.info('LogLike: %f' % logLike0) saved_state = LikelihoodState(self.like) # Get the ROI geometry # Loop over pixels w = copy.deepcopy(self._skywcs) # w = create_wcs(self._roi.skydir,cdelt=self._binsz,crpix=50.5) data = np.zeros((self.npix, self.npix)) # self.free_sources(free=False) xpix = (np.linspace(0, self.npix - 1, self.npix)[:, np.newaxis] * np.ones(data.shape)) ypix = (np.linspace(0, self.npix - 1, self.npix)[np.newaxis, :] * np.ones(data.shape)) radec = wcs_utils.pix_to_skydir(xpix, ypix, w) radec = (np.ravel(radec.ra.deg), np.ravel(radec.dec.deg)) testsource_dict = { 'ra': radec[0][0], 'dec': radec[1][0], 'SpectrumType': 'PowerLaw', 'Index': 2.0, 'Scale': 1000, 'Prefactor': {'value': 0.0, 'scale': 1e-13}, 'SpatialModel': 'PSFSource', } # src = self.roi.get_source_by_name('tsmap_testsource') for i, (ra, dec) in enumerate(zip(radec[0], radec[1])): testsource_dict['ra'] = ra testsource_dict['dec'] = dec # src.set_position([ra,dec]) self.add_source('tsmap_testsource', testsource_dict, free=True, init_source=False, save_source_maps=False) # for c in self.components: # c.update_srcmap_file([src],True) self.set_parameter('tsmap_testsource', 'Prefactor', 0.0, update_source=False) self.fit(loglevel=logging.DEBUG, update=False) logLike1 = -self.like() ts = max(0, 2 * (logLike1 - logLike0)) data.flat[i] = ts # print i, ra, dec, ts # print self.like() # print self.components[0].like.model['tsmap_testsource'] self.delete_source('tsmap_testsource') saved_state.restore() outfile = os.path.join(self.config['fileio']['workdir'], 'tsmap.fits') fits_utils.write_fits_image(data, w, outfile)
def _make_tsmap_fast(self, prefix, **kwargs): """ Make a TS map from a GTAnalysis instance. This is a simplified implementation optimized for speed that only fits for the source normalization (all background components are kept fixed). The spectral/spatial characteristics of the test source can be defined with the src_dict argument. By default this method will generate a TS map for a point source with an index=2.0 power-law spectrum. Parameters ---------- model : dict or `~fermipy.roi_model.Source` Dictionary or Source object defining the properties of the test source that will be used in the scan. """ src_dict = copy.deepcopy(kwargs.setdefault('model', {})) src_dict = {} if src_dict is None else src_dict multithread = kwargs.setdefault('multithread', False) threshold = kwargs.setdefault('threshold', 1E-2) max_kernel_radius = kwargs.get('max_kernel_radius') loge_bounds = kwargs.setdefault('loge_bounds', None) if loge_bounds is not None: if len(loge_bounds) == 0: loge_bounds = [None, None] elif len(loge_bounds) == 1: loge_bounds += [None] loge_bounds[0] = (loge_bounds[0] if loge_bounds[0] is not None else self.log_energies[0]) loge_bounds[1] = (loge_bounds[1] if loge_bounds[1] is not None else self.log_energies[-1]) else: loge_bounds = [self.log_energies[0], self.log_energies[-1]] # Put the test source at the pixel closest to the ROI center xpix, ypix = (np.round((self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) cpix = np.array([xpix, ypix]) skywcs = self._skywcs skydir = wcs_utils.pix_to_skydir(cpix[0], cpix[1], skywcs) src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) src_dict.setdefault('Prefactor', 1E-13) counts = [] bkg = [] model = [] c0_map = [] eslices = [] enumbins = [] model_npred = 0 for c in self.components: imin = utils.val_to_edge(c.log_energies, loge_bounds[0])[0] imax = utils.val_to_edge(c.log_energies, loge_bounds[1])[0] eslice = slice(imin, imax) bm = c.model_counts_map(exclude=kwargs['exclude']).counts.astype('float')[ eslice, ...] cm = c.counts_map().counts.astype('float')[eslice, ...] bkg += [bm] counts += [cm] c0_map += [cash(cm, bm)] eslices += [eslice] enumbins += [cm.shape[0]] self.add_source('tsmap_testsource', src_dict, free=True, init_source=False) src = self.roi['tsmap_testsource'] # self.logger.info(str(src_dict)) modelname = utils.create_model_name(src) for c, eslice in zip(self.components, eslices): mm = c.model_counts_map('tsmap_testsource').counts.astype('float')[ eslice, ...] model_npred += np.sum(mm) model += [mm] self.delete_source('tsmap_testsource') for i, mm in enumerate(model): dpix = 3 for j in range(mm.shape[0]): ix, iy = np.unravel_index( np.argmax(mm[j, ...]), mm[j, ...].shape) mx = mm[j, ix, :] > mm[j, ix, iy] * threshold my = mm[j, :, iy] > mm[j, ix, iy] * threshold dpix = max(dpix, np.round(np.sum(mx) / 2.)) dpix = max(dpix, np.round(np.sum(my) / 2.)) if max_kernel_radius is not None and \ dpix > int(max_kernel_radius / self.components[i].binsz): dpix = int(max_kernel_radius / self.components[i].binsz) xslice = slice(max(int(xpix - dpix), 0), min(int(xpix + dpix + 1), self.npix)) model[i] = model[i][:, xslice, xslice] ts_values = np.zeros((self.npix, self.npix)) amp_values = np.zeros((self.npix, self.npix)) wrap = functools.partial(_ts_value_newton, counts=counts, bkg=bkg, model=model, C_0_map=c0_map) if kwargs['map_skydir'] is not None: map_offset = wcs_utils.skydir_to_pix(kwargs['map_skydir'], self._skywcs) map_delta = 0.5 * kwargs['map_size'] / self.components[0].binsz xmin = max(int(np.ceil(map_offset[1] - map_delta)), 0) xmax = min(int(np.floor(map_offset[1] + map_delta)) + 1, self.npix) ymin = max(int(np.ceil(map_offset[0] - map_delta)), 0) ymax = min(int(np.floor(map_offset[0] + map_delta)) + 1, self.npix) xslice = slice(xmin, xmax) yslice = slice(ymin, ymax) xyrange = [range(xmin, xmax), range(ymin, ymax)] map_wcs = skywcs.deepcopy() map_wcs.wcs.crpix[0] -= ymin map_wcs.wcs.crpix[1] -= xmin else: xyrange = [range(self.npix), range(self.npix)] map_wcs = skywcs xslice = slice(0, self.npix) yslice = slice(0, self.npix) positions = [] for i, j in itertools.product(xyrange[0], xyrange[1]): p = [[k // 2, i, j] for k in enumbins] positions += [p] if multithread: pool = Pool() results = pool.map(wrap, positions) pool.close() pool.join() else: results = map(wrap, positions) for i, r in enumerate(results): ix = positions[i][0][1] iy = positions[i][0][2] ts_values[ix, iy] = r[0] amp_values[ix, iy] = r[1] ts_values = ts_values[xslice, yslice] amp_values = amp_values[xslice, yslice] ts_map = Map(ts_values, map_wcs) sqrt_ts_map = Map(ts_values**0.5, map_wcs) npred_map = Map(amp_values * model_npred, map_wcs) amp_map = Map(amp_values * src.get_norm(), map_wcs) o = {'name': utils.join_strings([prefix, modelname]), 'src_dict': copy.deepcopy(src_dict), 'file': None, 'ts': ts_map, 'sqrt_ts': sqrt_ts_map, 'npred': npred_map, 'amplitude': amp_map, 'config': kwargs } fits_file = utils.format_filename(self.config['fileio']['workdir'], 'tsmap.fits', prefix=[prefix, modelname]) if kwargs['write_fits']: fits_utils.write_maps(ts_map, {'SQRT_TS_MAP': sqrt_ts_map, 'NPRED_MAP': npred_map, 'N_MAP': amp_map}, fits_file) o['file'] = os.path.basename(fits_file) if kwargs['write_npy']: np.save(os.path.splitext(fits_file)[0] + '.npy', o) return o
def _make_residual_map(self, prefix, config, **kwargs): write_fits = kwargs.get('write_fits', True) write_npy = kwargs.get('write_npy', True) src_dict = copy.deepcopy(config.setdefault('model', {})) exclude = config.setdefault('exclude', None) loge_bounds = config.setdefault('loge_bounds', None) if loge_bounds is not None: if len(loge_bounds) == 0: loge_bounds = [None, None] elif len(loge_bounds) == 1: loge_bounds += [None] loge_bounds[0] = (loge_bounds[0] if loge_bounds[0] is not None else self.energies[0]) loge_bounds[1] = (loge_bounds[1] if loge_bounds[1] is not None else self.energies[-1]) else: loge_bounds = [self.energies[0], self.energies[-1]] # Put the test source at the pixel closest to the ROI center xpix, ypix = (np.round( (self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) cpix = np.array([xpix, ypix]) skywcs = self._skywcs skydir = wcs_utils.pix_to_skydir(cpix[0], cpix[1], skywcs) if src_dict is None: src_dict = {} src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) kernel = None if src_dict['SpatialModel'] == 'Gaussian': kernel = utils.make_gaussian_kernel(src_dict['SpatialWidth'], cdelt=self.components[0].binsz, npix=101) kernel /= np.sum(kernel) cpix = [50, 50] self.add_source('residmap_testsource', src_dict, free=True, init_source=False, save_source_maps=False) src = self.roi.get_source_by_name('residmap_testsource') modelname = utils.create_model_name(src) npix = self.components[0].npix mmst = np.zeros((npix, npix)) cmst = np.zeros((npix, npix)) emst = np.zeros((npix, npix)) sm = get_source_kernel(self, 'residmap_testsource', kernel) ts = np.zeros((npix, npix)) sigma = np.zeros((npix, npix)) excess = np.zeros((npix, npix)) self.delete_source('residmap_testsource') for i, c in enumerate(self.components): imin = utils.val_to_edge(c.energies, loge_bounds[0])[0] imax = utils.val_to_edge(c.energies, loge_bounds[1])[0] mc = c.model_counts_map(exclude=exclude).counts.astype('float') cc = c.counts_map().counts.astype('float') ec = np.ones(mc.shape) ccs = convolve_map(cc, sm[i], cpix, imin=imin, imax=imax) mcs = convolve_map(mc, sm[i], cpix, imin=imin, imax=imax) ecs = convolve_map(ec, sm[i], cpix, imin=imin, imax=imax) cms = np.sum(ccs, axis=0) mms = np.sum(mcs, axis=0) ems = np.sum(ecs, axis=0) cmst += cms mmst += mms emst += ems # cts = 2.0 * (poisson_lnl(cms, cms) - poisson_lnl(cms, mms)) excess += cms - mms ts = 2.0 * (poisson_lnl(cmst, cmst) - poisson_lnl(cmst, mmst)) sigma = np.sqrt(ts) sigma[excess < 0] *= -1 emst /= np.max(emst) sigma_map = Map(sigma, skywcs) model_map = Map(mmst / emst, skywcs) data_map = Map(cmst / emst, skywcs) excess_map = Map(excess / emst, skywcs) o = { 'name': utils.join_strings([prefix, modelname]), 'file': None, 'sigma': sigma_map, 'model': model_map, 'data': data_map, 'excess': excess_map, 'config': config } fits_file = utils.format_filename(self.config['fileio']['workdir'], 'residmap.fits', prefix=[prefix, modelname]) if write_fits: fits_utils.write_maps( sigma_map, { 'DATA_MAP': data_map, 'MODEL_MAP': model_map, 'EXCESS_MAP': excess_map }, fits_file) o['file'] = os.path.basename(fits_file) if write_npy: np.save(os.path.splitext(fits_file)[0] + '.npy', o) return o
def _make_tsmap_fast(self, prefix, **kwargs): """ Make a TS map from a GTAnalysis instance. This is a simplified implementation optimized for speed that only fits for the source normalization (all background components are kept fixed). The spectral/spatial characteristics of the test source can be defined with the src_dict argument. By default this method will generate a TS map for a point source with an index=2.0 power-law spectrum. Parameters ---------- model : dict or `~fermipy.roi_model.Source` Dictionary or Source object defining the properties of the test source that will be used in the scan. """ loglevel = kwargs.get('loglevel', self.loglevel) src_dict = copy.deepcopy(kwargs.setdefault('model', {})) src_dict = {} if src_dict is None else src_dict multithread = kwargs.setdefault('multithread', False) threshold = kwargs.setdefault('threshold', 1E-2) max_kernel_radius = kwargs.get('max_kernel_radius') loge_bounds = kwargs.setdefault('loge_bounds', None) use_pylike = kwargs.setdefault('use_pylike', True) if loge_bounds: if len(loge_bounds) != 2: raise Exception('Wrong size of loge_bounds array.') loge_bounds[0] = (loge_bounds[0] if loge_bounds[0] is not None else self.log_energies[0]) loge_bounds[1] = (loge_bounds[1] if loge_bounds[1] is not None else self.log_energies[-1]) else: loge_bounds = [self.log_energies[0], self.log_energies[-1]] # Put the test source at the pixel closest to the ROI center xpix, ypix = (np.round((self.npix - 1.0) / 2.), np.round((self.npix - 1.0) / 2.)) cpix = np.array([xpix, ypix]) skywcs = self._skywcs skydir = wcs_utils.pix_to_skydir(cpix[0], cpix[1], skywcs) src_dict['ra'] = skydir.ra.deg src_dict['dec'] = skydir.dec.deg src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) src_dict.setdefault('Prefactor', 1E-13) counts = [] bkg = [] model = [] c0_map = [] eslices = [] enumbins = [] model_npred = 0 for c in self.components: imin = utils.val_to_edge(c.log_energies, loge_bounds[0])[0] imax = utils.val_to_edge(c.log_energies, loge_bounds[1])[0] eslice = slice(imin, imax) bm = c.model_counts_map(exclude=kwargs['exclude']).counts.astype('float')[ eslice, ...] cm = c.counts_map().counts.astype('float')[eslice, ...] bkg += [bm] counts += [cm] c0_map += [cash(cm, bm)] eslices += [eslice] enumbins += [cm.shape[0]] self.add_source('tsmap_testsource', src_dict, free=True, init_source=False, use_single_psf=True, use_pylike=use_pylike, loglevel=logging.DEBUG) src = self.roi['tsmap_testsource'] # self.logger.info(str(src_dict)) modelname = utils.create_model_name(src) for c, eslice in zip(self.components, eslices): mm = c.model_counts_map('tsmap_testsource').counts.astype('float')[ eslice, ...] model_npred += np.sum(mm) model += [mm] self.delete_source('tsmap_testsource', loglevel=logging.DEBUG) for i, mm in enumerate(model): dpix = 3 for j in range(mm.shape[0]): ix, iy = np.unravel_index( np.argmax(mm[j, ...]), mm[j, ...].shape) mx = mm[j, ix, :] > mm[j, ix, iy] * threshold my = mm[j, :, iy] > mm[j, ix, iy] * threshold dpix = max(dpix, np.round(np.sum(mx) / 2.)) dpix = max(dpix, np.round(np.sum(my) / 2.)) if max_kernel_radius is not None and \ dpix > int(max_kernel_radius / self.components[i].binsz): dpix = int(max_kernel_radius / self.components[i].binsz) xslice = slice(max(int(xpix - dpix), 0), min(int(xpix + dpix + 1), self.npix)) model[i] = model[i][:, xslice, xslice] ts_values = np.zeros((self.npix, self.npix)) amp_values = np.zeros((self.npix, self.npix)) wrap = functools.partial(_ts_value_newton, counts=counts, bkg=bkg, model=model, C_0_map=c0_map) if kwargs['map_skydir'] is not None: map_offset = wcs_utils.skydir_to_pix(kwargs['map_skydir'], self._skywcs) map_delta = 0.5 * kwargs['map_size'] / self.components[0].binsz xmin = max(int(np.ceil(map_offset[1] - map_delta)), 0) xmax = min(int(np.floor(map_offset[1] + map_delta)) + 1, self.npix) ymin = max(int(np.ceil(map_offset[0] - map_delta)), 0) ymax = min(int(np.floor(map_offset[0] + map_delta)) + 1, self.npix) xslice = slice(xmin, xmax) yslice = slice(ymin, ymax) xyrange = [range(xmin, xmax), range(ymin, ymax)] map_wcs = skywcs.deepcopy() map_wcs.wcs.crpix[0] -= ymin map_wcs.wcs.crpix[1] -= xmin else: xyrange = [range(self.npix), range(self.npix)] map_wcs = skywcs xslice = slice(0, self.npix) yslice = slice(0, self.npix) positions = [] for i, j in itertools.product(xyrange[0], xyrange[1]): p = [[k // 2, i, j] for k in enumbins] positions += [p] self.logger.log(loglevel, 'Fitting test source.') if multithread: pool = Pool() results = pool.map(wrap, positions) pool.close() pool.join() else: results = map(wrap, positions) for i, r in enumerate(results): ix = positions[i][0][1] iy = positions[i][0][2] ts_values[ix, iy] = r[0] amp_values[ix, iy] = r[1] ts_values = ts_values[xslice, yslice] amp_values = amp_values[xslice, yslice] ts_map = Map(ts_values, map_wcs) sqrt_ts_map = Map(ts_values**0.5, map_wcs) npred_map = Map(amp_values * model_npred, map_wcs) amp_map = Map(amp_values * src.get_norm(), map_wcs) o = {'name': utils.join_strings([prefix, modelname]), 'src_dict': copy.deepcopy(src_dict), 'file': None, 'ts': ts_map, 'sqrt_ts': sqrt_ts_map, 'npred': npred_map, 'amplitude': amp_map, 'loglike': -self.like(), 'config': kwargs } return o