Exemple #1
0
 def __init__(self,
              shape=None,
              full_conn=True,
              biases=True,
              random_weights=True,
              normalize=True,
              reduce_empty_dims=True):
     """
     shape: shape of a NN given as a tuple
     """
     self.shape = shape
     self.full_conn = full_conn
     self.biases = biases
     self.random_weights = random_weights
     self.normalize = normalize
     self.reduce_empty_dims = reduce_empty_dims
     if self.normalize:
         self.norm = StandardScaler()
     self.shape = shape
     if shape:
         if self.full_conn:
             conec = tmlgraph(self.shape, self.biases)
         else:
             conec = mlgraph(self.shape, self.biases)
         self.model = ffnet(conec)
         if random_weights:
             self.model.randomweights()
 def fit(self, descs, target_values, train_alg='tnc',**kwargs):
     # setup neural network
     if self.full_conn:
         conec = tmlgraph(self.shape, self.biases)
     else:
         conec = mlgraph(self.shape, self.biases)
     self.model = ffnet(conec)
     if self.random_weights:
         if not self.random_state is None:
             random_seed(self.random_state)
         self.model.randomweights()
     # train
     getattr(self.model, 'train_'+train_alg)(descs, target_values, nproc='ncpu' if self.n_jobs < 1 else self.n_jobs, **kwargs)
     return self
 def fit(self, descs, target_values, train_alg='tnc', **kwargs):
     # setup neural network
     if self.full_conn:
         conec = tmlgraph(self.shape, self.biases)
     else:
         conec = mlgraph(self.shape, self.biases)
     self.model = ffnet(conec)
     if self.random_weights:
         if not self.random_state is None:
             random_seed(self.random_state)
         self.model.randomweights()
     # train
     getattr(self.model, 'train_' + train_alg)(
         descs,
         target_values,
         nproc='ncpu' if self.n_jobs < 1 else self.n_jobs,
         **kwargs)
     return self
def creatingNeuralNetwork(num_hidden,data_s,data_l):
  dataset_data = data_s
  dataset_labels = data_l
  #create the gab of 6-grams vocabulary
  tfidf_vectorizer = TfidfVectorizer(ngram_range=(1, 6),token_pattern=ur'\b\w+\b',min_df=0.05)
  tfidf_vectorizer.fit(dataset_data)
  feature_names = tfidf_vectorizer.get_feature_names()
  number_of_input_features = len(feature_names)
  # Create the feature dataset
  indata = np.zeros((len(dataset_data),number_of_input_features))
  for j,sentence in enumerate(dataset_data):
    indata[j,:] =  tfidf_vectorizer.transform([sentence]).toarray()[0]
  #create the neural network
  number_of_hidden_nodes = num_hidden
  conec = tmlgraph((number_of_input_features,number_of_hidden_nodes, 1))
  net = ffnet(conec)
  #please print nothing
  net.train_tnc(indata, dataset_labels, maxfun = 5000, messages=0) 
  output, regression = net.test(indata, dataset_labels, iprint = 0)
  return net, number_of_input_features, tfidf_vectorizer
Exemple #5
0
 def __init__(
     self, shape=None, full_conn=True, biases=True, random_weights=True, normalize=True, reduce_empty_dims=True
 ):
     """
     shape: shape of a NN given as a tuple
     """
     self.shape = shape
     self.full_conn = full_conn
     self.biases = biases
     self.random_weights = random_weights
     self.normalize = normalize
     self.reduce_empty_dims = reduce_empty_dims
     if self.normalize:
         self.norm = StandardScaler()
     self.shape = shape
     if shape:
         if self.full_conn:
             conec = tmlgraph(self.shape, self.biases)
         else:
             conec = mlgraph(self.shape, self.biases)
         self.model = ffnet(conec)
         if random_weights:
             self.model.randomweights()
print feature_names


number_of_input_features = len(feature_names)

# Create the feature dataset
indata = np.zeros((len(dataset_data),number_of_input_features))

for j,sentence in enumerate(dataset_data):
    indata[j,:] =  tfidf_vectorizer.transform([sentence]).toarray()[0]

print 'Creating the neural network object' 
t2 = time.time()
#create the neural network
number_of_hidden_nodes = number_of_input_features
conec = tmlgraph((number_of_input_features,number_of_hidden_nodes, 1))
net = ffnet(conec)
t3 = time.time()
nn_create_time = t3-t2
print 'Time it took to create the neural network: ' + str(nn_create_time) + ' seconds.' 

print 'Starting the training of the neural network. This will take a while...' 
t4 = time.time()
net.train_tnc(indata, dataset_labels, maxfun = 5000, messages=1) 
t5 = time.time()
nn_train_time = t5-t4
output, regression = net.test(indata, dataset_labels, iprint = 2)
print 'Time it took to train the neural network: ' + str(nn_train_time) + ' seconds.' 

#build the evaluation dataset - similar as above
evaluation_filenames_positive = glob.glob("testing/pos/*.txt")
def train_ANN(inputs_array, target_array, iterations, node_architecture, 
              **configs_dict):

    # Same first dimension?
    if not inputs_array.shape[0] == target_array.shape[0]:
        raise Exception('Input and target arrays must have same first ' \
                        'dimension!')

    # Specified number of input nodes matches second dim of input array?
    n_input_nodes = node_architecture[0]
    if len(inputs_array.shape) == 1:
        sec_dim_inputs = 1
    else: 
        sec_dim_inputs = inputs_array.shape[1]
    if not n_input_nodes == sec_dim_inputs:
        raise Exception('Specified input node architecture (n = %s) ' \
                        'incompatible with passed input arrays... Returning!'
                        %str(n_input_nodes))

    # Specified number of target nodes matches second dim of target array?
    n_target_nodes = node_architecture[-1]
    if len(target_array.shape) == 1:
        sec_dim_target = 1
    else: 
        sec_dim_target = target_array.shape[1]
    if not n_target_nodes == sec_dim_target:
        raise Exception('Specified target node architecture (n = %s) ' \
                        'incompatible with passed input arrays... Returning!'
                        %str(n_target_nodes))        

    # Missing data in inputs array? (Warning only)
    if np.isnan(inputs_array).any():
        missing_inputs_flag = True
        warnings.warn('Specified ANN training input variables contain missing ' \
                      'data. NaNs will be inserted into prediction series!')
    else:
        missing_inputs_flag = False

    # Missing data in target array? (Warning only)
    if np.isnan(target_array).any():
        missing_target_flag = True
        warnings.warn('Specified ANN training target variables contain missing ' \
                      'data. These will be removed for training!')
    else:
        missing_target_flag = False

    # Check if saving trained network
    save_flag = False
    if 'save_network' in configs_dict.keys():
        if configs_dict['save_network']: 
            save_flag = True
        if not 'network_filepath' in configs_dict.keys():
            raise Exception('You must specify a file path if you wish to ' \
                            'save a new network!')
        else:
            split_pathname_list = os.path.split(configs_dict['network_filepath'])
            if not os.path.isdir(split_pathname_list[0]):
                raise Exception('The specified file path is not valid!')
            if split_pathname_list[1] == '':
                print 'Filename not supplied - using this_net.ann!'
                configs_dict['network_filepath'] = os.path.join(split_pathname_list[0],
                                                                'this_net.ann')
                      
    # Check if doing testing
    test_flag = False
    if 'test' in configs_dict:
        if configs_dict['test']:
            test_flag = True

    # Create a second series with nans dropped
    if missing_inputs_flag or missing_target_flag:
        new_array = np.empty([inputs_array.shape[0], 
                              sec_dim_inputs + sec_dim_target])
        new_array[:, :sec_dim_target] = target_array
        new_array[:, sec_dim_target:] = inputs_array
        new_array = new_array[~np.isnan(new_array).any(axis = 1)]
        clean_target_array = new_array[:, :sec_dim_target]
        clean_inputs_array = new_array[:, sec_dim_target:]

    # Generate network and train
    conec = tmlgraph(node_architecture)
    net = ffnet(conec)
    net.train_tnc(clean_inputs_array, clean_target_array, 
                  maxfun = iterations, messages = 1)

    # Save network if requested
    if save_flag:
        ffnet_class.savenet(net, configs_dict['network_filepath'])

    # Generate full series from inputs
    predict_array = net.call(inputs_array)

    # Do testing if requested
    if test_flag:
        vars_list = ['slope', 'intercept', 'r-value', 'p-value', 
                     'slope stderr', 'estim. stderr']
        valid_predict_array, stats_list = net.test(clean_inputs_array, 
                                                   clean_target_array)
        stats_dict = {var: stats_list[0][i] for i, var in enumerate(vars_list)}
        return predict_array, stats_dict
    else:
        return predict_array
Exemple #8
0
def train_ANN(inputs_array, target_array, iterations, node_architecture,
              **configs_dict):

    # Same first dimension?
    if not inputs_array.shape[0] == target_array.shape[0]:
        raise Exception('Input and target arrays must have same first ' \
                        'dimension!')

    # Specified number of input nodes matches second dim of input array?
    n_input_nodes = node_architecture[0]
    if len(inputs_array.shape) == 1:
        sec_dim_inputs = 1
    else:
        sec_dim_inputs = inputs_array.shape[1]
    if not n_input_nodes == sec_dim_inputs:
        raise Exception('Specified input node architecture (n = %s) ' \
                        'incompatible with passed input arrays... Returning!'
                        %str(n_input_nodes))

    # Specified number of target nodes matches second dim of target array?
    n_target_nodes = node_architecture[-1]
    if len(target_array.shape) == 1:
        sec_dim_target = 1
    else:
        sec_dim_target = target_array.shape[1]
    if not n_target_nodes == sec_dim_target:
        raise Exception('Specified target node architecture (n = %s) ' \
                        'incompatible with passed input arrays... Returning!'
                        %str(n_target_nodes))

    # Missing data in inputs array? (Warning only)
    if np.isnan(inputs_array).any():
        missing_inputs_flag = True
        warnings.warn('Specified ANN training input variables contain missing ' \
                      'data. NaNs will be inserted into prediction series!')
    else:
        missing_inputs_flag = False

    # Missing data in target array? (Warning only)
    if np.isnan(target_array).any():
        missing_target_flag = True
        warnings.warn('Specified ANN training target variables contain missing ' \
                      'data. These will be removed for training!')
    else:
        missing_target_flag = False

    # Check if saving trained network
    save_flag = False
    if 'save_network' in configs_dict.keys():
        if configs_dict['save_network']:
            save_flag = True
        if not 'network_filepath' in configs_dict.keys():
            raise Exception('You must specify a file path if you wish to ' \
                            'save a new network!')
        else:
            split_pathname_list = os.path.split(
                configs_dict['network_filepath'])
            if not os.path.isdir(split_pathname_list[0]):
                raise Exception('The specified file path is not valid!')
            if split_pathname_list[1] == '':
                print 'Filename not supplied - using this_net.ann!'
                configs_dict['network_filepath'] = os.path.join(
                    split_pathname_list[0], 'this_net.ann')

    # Check if doing testing
    test_flag = False
    if 'test' in configs_dict:
        if configs_dict['test']:
            test_flag = True

    # Create a second series with nans dropped
    if missing_inputs_flag or missing_target_flag:
        new_array = np.empty(
            [inputs_array.shape[0], sec_dim_inputs + sec_dim_target])
        new_array[:, :sec_dim_target] = target_array
        new_array[:, sec_dim_target:] = inputs_array
        new_array = new_array[~np.isnan(new_array).any(axis=1)]
        clean_target_array = new_array[:, :sec_dim_target]
        clean_inputs_array = new_array[:, sec_dim_target:]

    # Generate network and train
    conec = tmlgraph(node_architecture)
    net = ffnet(conec)
    net.train_tnc(clean_inputs_array,
                  clean_target_array,
                  maxfun=iterations,
                  messages=1)

    # Save network if requested
    if save_flag:
        ffnet_class.savenet(net, configs_dict['network_filepath'])

    # Generate full series from inputs
    predict_array = net.call(inputs_array)

    # Do testing if requested
    if test_flag:
        vars_list = [
            'slope', 'intercept', 'r-value', 'p-value', 'slope stderr',
            'estim. stderr'
        ]
        valid_predict_array, stats_list = net.test(clean_inputs_array,
                                                   clean_target_array)
        stats_dict = {var: stats_list[0][i] for i, var in enumerate(vars_list)}
        return predict_array, stats_dict
    else:
        return predict_array
Exemple #9
0
if args.index:
    src = np.concatenate([xLUT['index'] for xLUT in LUT], axis=0)
    src = src.astype(float)
else:
    src = np.concatenate([xLUT['src'] for xLUT in LUT], axis=0)
trg = np.concatenate([xLUT[LUT_var] for xLUT in LUT], axis=0)

# initialize ANN
if type(args_ANN_setup) == str:
    net = ff.loadnet(args_ANN_setup)
    setup = "UNKNOWN"
else:
    num_inp_nodes, num_out_nodes = [src.shape[1]], [trg.shape[1]]
    setup = tuple(num_inp_nodes + args_ANN_setup + num_out_nodes)
    if args.full:
        conec = ff.tmlgraph(setup)
    else:
        conec = ff.mlgraph(setup)
    net = ff.ffnet(conec)

# build up a shuffled test and train array
ind = int(src.shape[0] * (1.0 - args.test_perc))
s_src, s_trg = Shuffle_2D_X(src, trg)
src_train, trg_train = s_src[:ind, :], s_trg[:ind, :]
src_test, trg_test = s_src[ind:, :], s_trg[ind:, :]

# output
netcdf_output = Get_Output_Name(args.LUT[0], args.coeff_type)
Print_Header(LUT_name=args.LUT,
             coeff_type=args.coeff_type,
             ANN_setup=setup,
Exemple #10
0
def ANN_gapfill_func(myBaseforResults,New_combined,Site_ID,list_in,list_out,iterations,index_str,is_this_all,ANN_label_all,ANN_label,frequency,Use_Fc_Storage):

    ###########################################################################################################
    ##                 START MAIN CODE
    ###########################################################################################################
    if 'Fc' in list_out:
        units="umol.m-2.s-1"
    elif ('Fe' or 'Fh' or 'Fg') in list_out:
        units="W.m-2"
    else:
        units=" "
    
    ###### User-set IO file locations ######
    
    print "Starting ANN gap filling"
    #Check for place to put results - does it exist? If not create
    if not os.path.isdir(myBaseforResults):
        os.mkdir(myBaseforResults)
    #Then subdirectories
    if not os.path.isdir(myBaseforResults+"/ANN"):
        os.mkdir(myBaseforResults+"/ANN")
    mypathforResults=myBaseforResults+"/ANN"  
      
    #We need to update VPD for input here so also need e and es
    # Calculate vapour pressure from absolute humidity and temperature
    #  Ah - absolute humidity, g/m3
    #  Ta - air temperature, C
    New_combined['VPD_Con']=(metfuncs.es(New_combined['Ta_Con']))-(metfuncs.vapourpressure(New_combined['Ah_Con'],New_combined['Ta_Con']))
    
    number_of_inputs=len(list_in)
    number_of_outputs=len(list_out)
    #startdate=dt.date(2008,7,1)
    #enddate=dt.date(2008,8,1)
    alllist=list_in + list_out
    xnow=New_combined[alllist]                         #[startdate:enddate]
    xnow=xnow.dropna(how='any')
    #Drop nans and missing values so that Good data only is used in the training
    xarray=np.array(xnow.dropna().reset_index(drop=True))
    #Define inputs and targets for NN from DF
    inputs =  xarray[:, :number_of_inputs] #first 2 columns
    lastcolums=(-1*number_of_outputs)
    targets = xarray[:, lastcolums:] #last column
    
    # Generate standard layered network architecture and create network
    #different network architectures avaiable
    #conec = mlgraph((number_of_inputs,24,16,number_of_outputs))  # Creates standard multilayer network architecture
    conec = tmlgraph((number_of_inputs,24,16,number_of_outputs))  # Creates multilayer network full connectivity list
    #conec = imlgraph((number_of_inputs,24,16,number_of_outputs))  # Creates multilayer architecture with independent outputs
    
    net = ffnet(conec)
    
    print "TRAINING NETWORK..."
    net.train_tnc(inputs, targets, maxfun = iterations, messages=1)
    #net.train_rprop(inputs, targets, maxiter=iterations)
    #net.train_momentum(inputs, targets, maxfun = iterations, messages=1)
    #net.train_genetic(inputs, targets, maxfun = iterations, messages=1)
    #net.train_cg(inputs, targets, maxfun = iterations, messages=1)
    #net.train_bfgs(inputs, targets, maxfun = iterations, messages=1)
    
    
    # Test network
    print "TESTING NETWORK..."
    output, regression = net.test(inputs, targets, iprint = 0)
    
    print "R-squared:           %s  " %str(regression[0][2])
    #print "max. absolute error: %s  " %str(abs( array(output).reshape( len(output) ) - array(targets) ).max())
    output, regress = net.test(inputs, targets)
    
    #Create array for results. Then loop through elements on the original data to predict the ANN value
    predicted=np.empty((len(xarray),number_of_outputs))
    observed=np.empty((len(xarray),number_of_outputs))
    for index,rowdata in enumerate(xarray):
        predicted[index]=net([rowdata[0:number_of_inputs]])
        observed[index]=np.array(rowdata[-1.0*number_of_outputs : ])
	#observed[index]=np.array(rowdata[(-1.0*number_of_outputs)])
	
    ############################################    
    # Generate output and return new variables
    ############################################
    #Create a new variable called '_NN'
    for index, item in enumerate(list_out):
	ANN_label=str(item+"_NN")
	ANN_label_all=str(item+"_NN_all")
	if is_this_all == True:
	    New_combined[ANN_label_all]=net.call(New_combined[list_in])[:,index] 
	else:
	    New_combined[ANN_label]=net.call(New_combined[list_in])[:,index]    
    
    for index, item in enumerate(list_out):   
        #####################################################
        #  Plots 
        #####################################################
        #Plot time series of all 30 minute data
        mintimeseries_plot(mypathforResults,predicted,observed,regress,item, Site_ID,units,targets,output,list_out,index_str)
        #Plot regression of Tower versus ANN
        regressionANN2(mypathforResults,predicted,observed,regress,item, Site_ID,units,list_out,index_str)
        #Plot diurnals for every second month 6 graphs - only when enough months so all or annual
        if frequency=="all" or frequency=="annual" or is_this_all==True:
	    Doplots_diurnal_monthly(mypathforResults,New_combined,item, Site_ID,units,list_out,index_str,is_this_all)
        #Plot diurnals for every second month 6 graphs
        Doplots_diurnal(mypathforResults,New_combined,item, Site_ID,units,list_out,index_str,frequency)	
        #Plot timeseries of monthly over all periods
        Doplots_monthly(mypathforResults,New_combined,item, Site_ID,units,list_out,index_str,frequency)
                        
    return New_combined
Exemple #11
0
    return network, output, regression, (summ / len(test_output))


def calculate_network(input_, target_, test_input, test_output, net1):
    network, output, regression, error = single_network(input_, target_, test_input, test_output, net1)
    for i in range(4):
        network1, output1, regression1, error1 = single_network(input_, target_, test_input, test_output, net1)
        if (error1 < error):
            network = network
            output = output1
            regression = regression1
            error = error1
    return network, output, regression, error


CONEC = tmlgraph((54, 10, 24))  # model of connections
NET = ffnet(CONEC)


# NX.draw_graphviz(net.graph, prog='dot') show the network that's nice!
# pl.show()
#
# calculate special days
summ_error = 0.0
for i in range(4):
    net = ffnet(CONEC)  # year have 52 weeks so, we have 52 special days in year
    network, output, regression, error = calculate_network(
        LEARNING_SPECIALIST[i][:-52],
        LEARNING_SPECIALIST_OUTPUT[i][:-52],
        LEARNING_SPECIALIST[i][-52:],
        LEARNING_SPECIALIST_OUTPUT[i][-52:], net)
Exemple #12
0
def Fre_ANN_gapfill_func(myBaseforResults,New_combined,Site_ID,list_in,list_out,iterations,latitude,longitude,index_str,ANN_label,frequency,evening,min_threshold,max_threshold,Ustar_filter_type):     
    
    if 'Fc' in list_out:
        units="umol.m-2.s-1"
    elif ('Fe' or 'Fh' or 'Fg') in list_out:
        units="W.m-2"
    else:
        units=" "
    
    ###### User-set IO file locations ######
    
    print "Starting ANN gap filling"
    
    #Check for place to put results - does it exist? If not create
    if not os.path.isdir(myBaseforResults):
        os.mkdir(myBaseforResults)
    #Then subdirectories
    if not os.path.isdir(myBaseforResults+"/ANN"):
        os.mkdir(myBaseforResults+"/ANN")
    mypathforResults=myBaseforResults+"/ANN"  
    if not os.path.isdir(myBaseforResults+"/ANN/Fre"):
        os.mkdir(myBaseforResults+"/ANN/Fre")
    mypathforResults=myBaseforResults+"/ANN/Fre" 
    
    #We need to update VPD for input here so also need e and es
    # Calculate vapour pressure from absolute humidity and temperature
    #  Ah - absolute humidity, g/m3
    #  Ta - air temperature, C
  
    number_of_inputs=len(list_in)
    number_of_outputs=len(list_out)
    #startdate=dt.date(2008,7,1)
    #enddate=dt.date(2008,8,1)
    alllist=list_in + list_out
    #Here now for Re we can further restrict the traing data to be noctural and ustar filtered
    #So first create a series with day_night based on solar geometry
    
    #Get timezone info, call routines from external code
    global timezone
    currentdate="2013-06-01"
    timezone,InDstNow=TimeZone.get_timezone_info(latitude,longitude,currentdate)
    print "AskGEO TimZone offset (hrs):  ", timezone
 
    #Start with blank series
    New_combined['day_night']=np.nan
     
    def day_night(x):
	#Get date from data group
	currentdate= x.index[0]
	currentyear= x.index[0].year
	currentmonth= x.index[0].month
	currentday= x.index[0].day
	basedate=dt.datetime(1900, 1, 1,0,0,0,0)    
	delta=(currentdate-basedate).days  
	#Calculate Approximate Solar noon, call routines from external code
	#Call Solar_Calcs.solar_calculations(Date_input_excel,latitude,longitude,timezone)
	solar_sunrise,solar_noon_for_date,solar_sunset  =Solar_Calcs.solar_calculations(delta,latitude,longitude,timezone)
	#return a fraction.  Convert to decimal hours
	solar_sunrise=solar_sunrise*24
	solar_sunset=solar_sunset*24
	daystart_hour= int(solar_sunrise)
	daystart_minute=int((solar_sunrise-daystart_hour)*60)
	daystart_dt=dt.datetime(currentyear,currentmonth,currentday,daystart_hour,daystart_minute,0)
	dayend_hour= int(solar_sunset)
	dayend_minute=int((solar_sunset-dayend_hour)*60)
	dayend_dt=dt.datetime(currentyear,currentmonth,currentday,dayend_hour,dayend_minute,0)	

	x['day_night'][daystart_dt:dayend_dt]=1
	#Define evening as 3 hours after sunset.  Needed for van Gorsel approach
	d=dt.timedelta(hours=3)
	eveningend_dt=dayend_dt+d
	x['day_night'][dayend_dt:eveningend_dt]=2
	#Else fill remainder with night
	x['day_night'][x['day_night'].isnull()]=3	
	#print x
	#print x[dayend_dt:eveningend_dt]
	#print solar_sunset
	#print daystart_dt
	#print dayend_dt
	#print eveningend_dt	
	return x
    
    #For each day of each year run the function to calculate day or night
    New_combined=New_combined.groupby([lambda x: x.year,lambda x: x.month,lambda x: x.day]).apply(day_night)
    #New_combined.to_csv(myBaseforResults+'/'+'Final_combined_'+Site_ID+'.csv', sep=',')
    
    ###############################
    #Define the data to select
    ###############################
    #Can select period of 'night' (2) and or 'evening' (3)
    if evening==True:
	xnow=New_combined[(New_combined['day_night']==3)]
    else:
	xnow=New_combined[(New_combined['day_night']==2)]
    # Use the actual ustar_used column which is defined from the type of ustar thershold approach chosen in the config
    xnow=xnow[xnow['ustar']>xnow['ustar_used']]

	
    #Remove -ve and +ve spikes which are uptake and inconsistent with Fre.
    xnow=xnow[xnow['Fc']>min_threshold][xnow['Fc']<max_threshold]
    xnow=xnow[alllist]
    #Drop nans and missing values so that Good data only is used in the training
    xnow=xnow.dropna(how='any')	

    xarray=np.array(xnow.dropna().reset_index(drop=True))
    #Define inputs and targets for NN from DF
    inputs =  xarray[:, :number_of_inputs] #first 2 columns
    lastcolums=(-1*number_of_outputs)
    targets = xarray[:, lastcolums:] #last column
    
    # Generate standard layered network architecture and create network
    #different network architectures avaiable
    #conec = mlgraph((number_of_inputs,24,16,number_of_outputs))  # Creates standard multilayer network architecture
    conec = tmlgraph((number_of_inputs,6,4,number_of_outputs))  # Creates multilayer network full connectivity list
    #conec = imlgraph((number_of_inputs,24,16,number_of_outputs))  # Creates multilayer architecture with independent outputs
    
    net = ffnet(conec)
    
    print "TRAINING NETWORK..."
    #net.train_tnc(inputs, targets, maxfun = iterations, messages=1)
    try:
	net.train_rprop(inputs, targets, maxiter=iterations)
    except:
	net.train_tnc(inputs, targets, maxfun = iterations, messages=1)
    #net.train_momentum(inputs, targets, maxfun = iterations, messages=1)
    #net.train_genetic(inputs, targets, maxfun = iterations, messages=1)
    #net.train_cg(inputs, targets, maxfun = iterations, messages=1)
    #net.train_bfgs(inputs, targets, maxfun = iterations, messages=1)
    
    
    # Test network
    print "TESTING NETWORK..."
    output, regression = net.test(inputs, targets, iprint = 0)
    
    print "R-squared:           %s  " %str(regression[0][2])
    #print "max. absolute error: %s  " %str(abs( array(output).reshape( len(output) ) - array(targets) ).max())
    output, regress = net.test(inputs, targets)
    
    #Create array for results. Then loop through elements on the original data to predict the ANN value
    predicted=np.empty((len(xarray),number_of_outputs))
    observed=np.empty((len(xarray),number_of_outputs))
    for index,rowdata in enumerate(xarray):
        predicted[index]=net([rowdata[0:number_of_inputs]])
        observed[index]=np.array(rowdata[(-1.0*number_of_outputs)])
    
    ############################################    
    # Generate output and return new variables
    ############################################
 
    for index, item in enumerate(list_out):
        New_combined[ANN_label]=net.call(New_combined[list_in])[:,index]
    
    #TEST
    #New_combined.to_csv("E:/My Dropbox/Dropbox/Data_flux_data/Site data processing/HowardSprings/Advanced/test_assertion.csv") 
    

    #####################################################
    #  Plots 
    #####################################################
    #Plot time series of all 30 minute data
    mintimeseries_plot(mypathforResults,predicted,observed,regress,item, Site_ID,units,targets,output,ANN_label,index_str)
    #Plot regression of Tower versus ANN
    regressionANN2(mypathforResults,predicted,observed,regress,item, Site_ID,units,ANN_label,index_str)
    #Plot diurnals for every second month 6 graphs
    Doplots_diurnal(mypathforResults,New_combined,item, Site_ID,units,ANN_label,index_str)
    #Plot diurnals for every second month 6 graphs
    if frequency=="all" or frequency=="annual":
	Doplots_diurnal_monthly(mypathforResults,New_combined,item, Site_ID,units,ANN_label,index_str)    
    #Plot timeseries of monthly over all periods
    Doplots_monthly(mypathforResults,New_combined,item, Site_ID,units,ANN_label,index_str)
		    
    ###################################################
    #  File stuff
    ###################################################
    
 
    return (New_combined)