def ffsampling_fft(t, T, sigmin, randombytes): """Compute the ffsampling of t, using T as auxilary information. Args: t: a vector T: a ldl decomposition tree Format: FFT Corresponds to algorithm 11 (ffSampling) of Falcon's documentation. """ n = len(t[0]) * fft_ratio z = [0, 0] if (n > 1): l10, T0, T1 = T z[1] = merge_fft( ffsampling_fft(split_fft(t[1]), T1, sigmin, randombytes)) t0b = add_fft(t[0], mul_fft(sub_fft(t[1], z[1]), l10)) z[0] = merge_fft( ffsampling_fft(split_fft(t0b), T0, sigmin, randombytes)) return z elif (n == 1): z[0] = [samplerz(t[0][0].real, T[0], sigmin, randombytes)] z[1] = [samplerz(t[1][0].real, T[0], sigmin, randombytes)] return z
def ffnp_fft(t, T): """ Compute the FFNP reduction of t, using T as auxilary information. Input: t A vector T The LDL decomposition tree of an (implicit) matrix G Output: z An integer vector such that (t - z) * B is short Format: FFT """ m = len(t) n = len(t[0]) * fft_ratio z = [None] * m # General case if (n > 1): L = T[0] for i in range(m - 1, -1, -1): # t[i] is "corrected", taking into accounts the t[j], z[j] (j > i) tib = t[i][:] for j in range(m - 1, i, -1): tib = add_fft(tib, mul_fft(sub_fft(t[j], z[j]), L[j][i])) # Recursive call z[i] = merge_fft(ffnp_fft(split_fft(tib), T[i + 1])) return z # Bottom case: round each coefficient in parallel elif (n == 1): z[0] = [round(t[0][0].real)] z[1] = [round(t[1][0].real)] return z
def ffnp_fft(t, T): """Compute the ffnp reduction of t, using T as auxilary information. Args: t: a vector T: a ldl decomposition tree Format: FFT """ n = len(t[0]) * fft_ratio z = [0, 0] if (n > 1): l10, T0, T1 = T z[1] = merge_fft(ffnp_fft(split_fft(t[1]), T1)) t0b = add_fft(t[0], mul_fft(sub_fft(t[1], z[1]), l10)) z[0] = merge_fft(ffnp_fft(split_fft(t0b), T0)) return z elif (n == 1): z[0] = [round(t[0][0].real)] z[1] = [round(t[1][0].real)] return z
def ffsampling_fft(t, T): """ Compute the fast Fourier sampling of t, using T as auxilary information. Input: t A vector T The LDL decomposition tree of an (implicit) matrix G Output: z An integer vector such that (t - z) * B is short Format: FFT This algorithim is a randomized version of ffnp_fft, such that z * B is distributed as a spherical Gaussian centered around t * B. """ m = len(t) n = len(t[0]) * fft_ratio z = [None] * m # General case if (n > 1): L = T[0] for i in range(m - 1, -1, -1): # t[i] is "corrected", taking into accounts the t[j], z[j] (j > i) tib = t[i][:] for j in range(m - 1, i, -1): tib = add_fft(tib, mul_fft(sub_fft(t[j], z[j]), L[j][i])) # Recursive call z[i] = merge_fft(ffsampling_fft(split_fft(tib), T[i + 1])) return z # Bottom case: round each coefficient in parallel elif (n == 1): z[0] = [sampler_z(T[0], t[0][0].real)] z[1] = [sampler_z(T[0], t[1][0].real)] return z