Exemple #1
0
    def full(self, **kwargs):
        """convert a tucker representation to a full tensor object
        A = CORE (*1) Basis1 (*2) Basis2 (*3) Basis3 ..., with (*n)  means n-mode product.
        from paper "A MULTILINEAR SINGULAR VALUE DECOMPOSITION" by LIEVEN DE LATHAUWER , BART DE MOOR , AND JOOS VANDEWALLE
        """
        # if core is a single scalar value, make it in a n-D array shape
        if np.prod(self.core.shape) == 1:
            self.core = np.reshape(self.core, tuple(self.r))

        if self.Fourier:
            res = self.fourier()
        else:
            res = self

        val = res.core.copy()
        for i in range(self.order):
            val = nModeProduct(val, res.basis[i].T, i)

        T = Tensor(name=res.name,
                   val=val,
                   order=0,
                   N=val.shape,
                   Fourier=False,
                   **kwargs)

        if self.Fourier:
            T.fourier()

        return T
Exemple #2
0
    def full(self, **kwargs):
        "return a full tensor object"

        if self.order == 2:
            if self.Fourier:
                res = self.fourier(copy=True)
            else:
                res = self

            # generate Tensor in real domain
            val = np.einsum('i,ik,il->kl', res.core, res.basis[0],
                            res.basis[1])
            kwargsT = dict(name=res.name,
                           val=val,
                           order=0,
                           N=val.shape,
                           Fourier=False,
                           fft_form='c')
            kwargsT.update(kwargs)
            T = Tensor(**kwargsT)

            if self.Fourier:
                T.fourier()
            return T
        else:
            raise NotImplementedError()
Exemple #3
0
    def test_even(self):
        print('\nChecking Tensors with even grid points...')

        for dim, n, fft_form in itertools.product([2, 3], [4, 5], fft_forms):
            msg = 'Tensors with: dim={}, n={}, fft_form={}'.format(
                dim, n, fft_form)

            N = dim * (n, )
            M = tuple(2 * np.array(N))

            u = Tensor(name='test',
                       shape=(),
                       N=N,
                       Fourier=False,
                       fft_form=fft_form)
            u.randomize()
            Fu = u.fourier(copy=True)
            FuM = Fu.project(M)
            uM = FuM.fourier()

            if n % 2 == 0:
                self.assertGreaterEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True),
                                        FuM.norm(componentwise=True),
                                        msg=msg)
                self.assertGreaterEqual(u.norm(), uM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True),
                                        uM.norm(componentwise=True),
                                        msg=msg)
            else:
                self.assertAlmostEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True),
                                       FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertAlmostEqual(u.norm(), uM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True),
                                       uM.norm(componentwise=True),
                                       msg=msg)

            self.assertAlmostEqual(0, u.mean() - FuM.mean(), msg=msg)
            self.assertAlmostEqual(u.mean(), uM.mean(), msg=msg)

            # testing that that interpolation on double grid have exactly the same values
            slc = tuple(u.order * [
                slice(None),
            ] + [slice(0, M[i], 2) for i in range(dim)])
            self.assertAlmostEqual(0,
                                   np.linalg.norm(u.val - uM.val[slc]),
                                   msg=msg)
        print('...ok')
Exemple #4
0
    def full(self, **kwargs):
        """
        convert TT to a full tensor object
        """

        if self.Fourier:
            res = self.fourier()
        else:
            res = self

        val = vector.full(res)

        # Tensor with the default fft_form for full tensor
        T = Tensor(name=res.name,
                   val=val,
                   order=0,
                   N=val.shape,
                   Fourier=False,
                   **kwargs)

        if self.Fourier:
            T.fourier()

        return T
    def test_even(self):
        print('\nChecking Tensors with even grid points...')

        for dim, n, fft_form in itertools.product([2,3], [4,5], fft_forms):
            msg='Tensors with: dim={}, n={}, fft_form={}'.format(dim, n, fft_form)

            N=dim*(n,)
            M=tuple(2*np.array(N))

            u=Tensor(name='test', shape=(), N=N, Fourier=False, fft_form=fft_form)
            u.randomize()
            Fu=u.fourier(copy=True)
            FuM=Fu.project(M)
            uM=FuM.fourier()

            if n%2 == 0:
                self.assertGreaterEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True), FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertGreaterEqual(u.norm(), uM.norm(), msg=msg)
                self.assertGreaterEqual(u.norm(componentwise=True), uM.norm(componentwise=True),
                                        msg=msg)
            else:
                self.assertAlmostEqual(u.norm(), FuM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True), FuM.norm(componentwise=True),
                                       msg=msg)
                self.assertAlmostEqual(u.norm(), uM.norm(), msg=msg)
                self.assertAlmostEqual(u.norm(componentwise=True), uM.norm(componentwise=True),
                                        msg=msg)

            self.assertAlmostEqual(0, u.mean()-FuM.mean(), msg=msg)
            self.assertAlmostEqual(u.mean(), uM.mean(), msg=msg)

            # testing that that interpolation on double grid have exactly the same values
            slc=tuple(u.order*[slice(None),]+[slice(0,M[i],2) for i in range(dim)])
            self.assertAlmostEqual(0, np.linalg.norm(u.val-uM.val[slc]), msg=msg)
        print('...ok')
Exemple #6
0
    def test_Fourier(self):
        print('\nChecking Fourier functions ...')

        for opt in [0, 'c']:

            a = SparseTensor(kind='cano', val=self.T2d, fft_form=opt)
            T = Tensor(val=self.T2d,
                       order=0,
                       N=self.T2d.shape,
                       Fourier=False,
                       fft_form=opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=opt).val -
                     T.fourier(copy=True).val), 0)
            self.assertEqual(
                norm(a.fourier().fourier(real_output=True).full().val.imag), 0)

            a = SparseTensor(kind='tucker', val=self.T3d, fft_form=opt)
            T = Tensor(val=self.T3d,
                       order=0,
                       N=self.T3d.shape,
                       Fourier=False,
                       fft_form=opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=opt) - T.fourier(copy=True)), 0)
            self.assertEqual(
                norm(a.fourier().fourier(real_output=True).full().val.imag), 0)

            a = SparseTensor(kind='tt', val=self.T3d, fft_form=opt)
            T = Tensor(val=self.T3d,
                       order=0,
                       N=self.T3d.shape,
                       Fourier=False,
                       fft_form=opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=opt) -
                     T.fourier(copy=True).val), 0)
            self.assertEqual(
                norm(a.fourier().fourier(real_output=True).full().val.imag), 0)
        # checking shifting fft_forms
        sparse_opt = 'sr'
        for full_opt in [0, 'c']:

            a = SparseTensor(kind='cano', val=self.T2d, fft_form=sparse_opt)
            T = Tensor(val=self.T2d,
                       order=0,
                       N=self.T2d.shape,
                       Fourier=False,
                       fft_form=full_opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=full_opt) -
                     T.fourier(copy=True)), 0)
            self.assertAlmostEqual((a.fourier().set_fft_form(full_opt) -
                                    a.set_fft_form(full_opt).fourier()).norm(),
                                   0)

            a = SparseTensor(kind='tucker', val=self.T3d, fft_form=sparse_opt)
            T = Tensor(val=self.T3d,
                       order=0,
                       N=self.T3d.shape,
                       Fourier=False,
                       fft_form=full_opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=full_opt) -
                     T.fourier(copy=True)), 0)
            self.assertAlmostEqual((a.fourier().set_fft_form(full_opt) -
                                    a.set_fft_form(full_opt).fourier()).norm(),
                                   0)

            a = SparseTensor(kind='tt', val=self.T3d, fft_form=sparse_opt)
            T = Tensor(val=self.T3d,
                       order=0,
                       N=self.T3d.shape,
                       Fourier=False,
                       fft_form=full_opt)
            self.assertAlmostEqual(
                norm(a.fourier().full(fft_form=full_opt) -
                     T.fourier(copy=True)), 0)
            self.assertAlmostEqual((a.fourier().set_fft_form(full_opt) -
                                    a.set_fft_form(full_opt).fourier()).norm(),
                                   0)

        print('...ok')