Exemple #1
0
def excite_system(mesh, Hy=0):

    sim = Sim(mesh, name="dyn")

    sim.set_options(rtol=1e-10, atol=1e-12)
    sim.alpha = 0.04
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load("m0.npy"))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, Hy, 2e-2], name="H")
    sim.add(zeeman)

    hx = TimeZeeman([0, 0, 1e-5], sinc_fun, name="h")
    sim.add(hx, save_field=True)

    dt = 5
    steps = 2001
    for i in range(steps):

        sim.run_until(i * dt)
Exemple #2
0
def relax_system(mesh):

    # Only relaxation
    sim = Sim(mesh, name='relax')

    # Simulation parameters
    sim.driver.set_tols(rtol=1e-8, atol=1e-10)
    sim.alpha = 0.5
    sim.driver.gamma = 2.211e5 / mu0
    sim.mu_s = 1e-27 / mu0
    sim.driver.do_precession = False

    # The initial state passed as a function
    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    # Energies
    exch = UniformExchange(J=2e-20)
    sim.add(exch)

    anis = Anisotropy(0.01 * 2e-20, axis=(0, 0, 1))
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Start relaxation and save the state in m0.npy
    sim.relax(dt=1e-14,
              stopping_dmdt=1e4,
              max_steps=5000,
              save_m_steps=None,
              save_vtk_steps=None)

    np.save('m0.npy', sim.spin)
Exemple #3
0
def excite_system(mesh):

    sim = Sim(mesh, name='dyn')

    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.alpha = 0.04
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load('m0.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 3.75e-3], name='H')
    sim.add(zeeman)

    w0 = 0.02

    def time_fun(t):
        return np.exp(-w0 * t)

    hx = TimeZeeman([0, 0, 1e-5], sinc_fun, name='h')
    sim.add(hx, save_field=True)

    ts = np.linspace(0, 20000, 5001)
    for t in ts:
        sim.run_until(t)
        print 'sim t=%g' % t
Exemple #4
0
def excite_system(mesh):

    sim = Sim(mesh, name="dyn")

    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.alpha = 0.04
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load("m0.npy"))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 3.75e-3], name="H")
    sim.add(zeeman)

    w0 = 0.02

    def time_fun(t):
        return np.exp(-w0 * t)

    hx = TimeZeeman([0, 0, 1e-5], sinc_fun, name="h")
    sim.add(hx, save_field=True)

    ts = np.linspace(0, 20000, 5001)
    for t in ts:
        sim.run_until(t)
        print "sim t=%g" % t
Exemple #5
0
def excite_system(mesh):

    sim = Sim(mesh, name="dyn", driver="sllg")
    sim.set_options(dt=1e-14, gamma=const.gamma, k_B=const.k_B)
    sim.alpha = 0.1
    sim.mu_s = const.mu_s_1
    sim.T = temperature_gradient

    sim.set_m(np.load("m0.npy"))

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.5 * J
    dmi = DMI(D)
    sim.add(dmi)

    Hz = 0.2 * J / const.mu_s_1
    zeeman = Zeeman([0, 0, Hz])
    sim.add(zeeman)

    dt = 2e-14 * 50  # 1e-12
    ts = np.linspace(0, 1000 * dt, 501)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
        print "sim t=%g" % t
Exemple #6
0
def test_dynamic():

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='dyn_spin', driver='llg_stt_cpp')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8, 0, -1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0, 0, 1)

    sim.a_J = 0.0052
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.driver.run_until(t)

    mz = sim.spin[2]
    alpha, K, u = 0.1, 0.05, 0.0052
    print(mz, u / (2 * alpha * K))

    #########################################################
    # The system used in this test can be solved analytically, which gives that mz = u/(2*alpha*K),
    # where K represents the easy-plane anisotropy.
    ###
    assert abs(mz - u / (2 * alpha * K)) / mz < 5e-4
Exemple #7
0
def relax_system_stage2():

    mesh = CuboidMesh(nx=140 , ny=140, nz=1)

    sim = Sim(mesh, name='dyn', driver='llg')
    sim.alpha = 0.1
    sim.do_precession = True
    sim.gamma = const.gamma
    sim.mu_s = spatial_mu

    sim.set_m(np.load('skx.npy'))

    J = 50 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.27 * J
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman(spatial_H)
    sim.add(zeeman)

    ts = np.linspace(0, 2e-9, 201)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
        print(t)
Exemple #8
0
def relax_system_stage1():

    mesh = CuboidMesh(nx=140 , ny=140, nz=1)

    sim = Sim(mesh, name='relax', driver='llg')
    #sim.set_options(dt=1e-14, gamma=const.gamma, k_B=const.k_B)
    sim.alpha = 0.5
    sim.do_precession = False
    sim.gamma = const.gamma
    sim.mu_s = spatial_mu

    sim.set_m(init_m)

    J = 50 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.27 * J
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman(spatial_H)
    sim.add(zeeman)

    sim.relax(dt=1e-14, stopping_dmdt=1e10, max_steps=1000,
              save_m_steps=100, save_vtk_steps=10)

    np.save('skx.npy', sim.spin)
    plot_m(mesh, 'skx.npy', comp='z')
Exemple #9
0
def test_skx_num():

    mesh = CuboidMesh(nx=120, ny=120, nz=1, periodicity=(True, True, False))

    sim = Sim(mesh, name='skx_num')
    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)

    sim.do_procession = False

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 5e-3])
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-2, max_steps=1000,
              save_m_steps=None, save_vtk_steps=None)

    skn = sim.skyrmion_number()
    print 'skx_number', skn
    assert skn > -1 and skn < -0.99
Exemple #10
0
def test_skx_num():

    mesh = CuboidMesh(nx=120, ny=120, nz=1, periodicity=(True, True, False))

    sim = Sim(mesh, name='skx_num')
    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)

    sim.do_procession = False

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 5e-3])
    sim.add(zeeman)

    sim.relax(dt=2.0,
              stopping_dmdt=1e-2,
              max_steps=1000,
              save_m_steps=None,
              save_vtk_steps=None)

    skn = sim.skyrmion_number()
    print 'skx_number', skn
    assert skn > -1 and skn < -0.99
Exemple #11
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load('m0.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    Kx = Anisotropy(Ku=0.005, axis=(1, 0, 0), name='Kx')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.u0 = 0.03
    sim.alpha = 0.1

    ts = np.linspace(0, 1e3, 101)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        print t
Exemple #12
0
def relax_system(mesh):

    sim=Sim(mesh,name='relax')
    sim.set_options(rtol=1e-12,atol=1e-14)
    sim.do_precession = False
    sim.alpha = 0.5
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0,0e-3,2e-2],name='H')
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-8, max_steps=10000, save_m_steps=None, save_vtk_steps=100)

    np.save('m0.npy',sim.spin)
Exemple #13
0
def excite_system(mesh, Hy=0):

    sim=Sim(mesh,name='dyn')

    sim.set_options(rtol=1e-10,atol=1e-12)
    sim.alpha = 0.04
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load('m0.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0,Hy,2e-2],name='H')
    sim.add(zeeman)

    hx = TimeZeeman([0,0,1e-5], sinc_fun, name='h')
    sim.add(hx, save_field=True)


    dt = 5
    steps = 2001
    for i in range(steps):

        sim.run_until(i*dt)
Exemple #14
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)
    # sim.set_m(random_m)
    # sim.set_m(np.load('m_10000.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 3.75e-3])
    sim.add(zeeman)

    sim.relax(dt=2.0,
              stopping_dmdt=1e-6,
              max_steps=1000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #15
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.set_options(rtol=1e-12, atol=1e-14)
    sim.do_procession = False
    sim.alpha = 0.5
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0e-3, 2e-2], name='H')
    sim.add(zeeman)

    sim.relax(dt=2.0,
              stopping_dmdt=1e-8,
              max_steps=10000,
              save_m_steps=None,
              save_vtk_steps=100)

    np.save('m0.npy', sim.spin)
def relax_system(mesh):

    # Only relaxation
    sim = Sim(mesh, name='relax')

    # Simulation parameters
    sim.driver.set_tols(rtol=1e-8, atol=1e-10)
    sim.alpha = 0.5
    sim.driver.gamma = 2.211e5 / mu0
    sim.mu_s = 1e-27 / mu0
    sim.driver.do_precession = False

    # The initial state passed as a function
    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    # Energies
    exch = UniformExchange(J=2e-20)
    sim.add(exch)

    anis = Anisotropy(0.01*2e-20, axis=(0, 0, 1))
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Start relaxation and save the state in m0.npy
    sim.relax(dt=1e-14, stopping_dmdt=1e4, max_steps=5000,
              save_m_steps=None, save_vtk_steps=None)

    np.save('m0.npy', sim.spin)
Exemple #17
0
def relax_system(mesh, Hy=0):

    sim = Sim(mesh, name="relax")
    sim.set_options(rtol=1e-10, atol=1e-12)
    sim.alpha = 0.5
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.do_precession = False

    sim.set_m(init_m)
    # sim.set_m(random_m)
    # sim.set_m(np.load('m_10000.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, Hy, 2e-2], name="H")
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-8, max_steps=10000, save_m_steps=100, save_vtk_steps=50)

    np.save("m0.npy", sim.spin)
def test_dynamic():

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='dyn_spin', driver='llg_stt_cpp')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8,0,-1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.a_J = 0.0052
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.driver.run_until(t)


    mz = sim.spin[2]
    alpha, K, u = 0.1, 0.05, 0.0052
    print(mz, u/(2*alpha*K))

    #########################################################
    # The system used in this test can be solved analytically, which gives that mz = u/(2*alpha*K),
    # where K represents the easy-plane anisotropy.
    ###
    assert abs(mz - u/(2*alpha*K))/mz< 5e-4
Exemple #19
0
def relax_system(mesh, Dx=0.005, Dp=0.01):

    mat = UnitMaterial()

    sim = Sim(mesh, name='test_energy')
    print('Created sim')
    sim.driver.set_tols(rtol=1e-10, atol=1e-12)

    sim.alpha = mat.alpha
    sim.driver.gamma = mat.gamma
    sim.pins = pin_fun

    exch = UniformExchange(mat.J)
    sim.add(exch)
    print('Added UniformExchange')

    anis = Anisotropy(Dx, axis=[1, 0, 0], name='Dx')
    sim.add(anis)
    print('Added Anisotropy')

    anis2 = Anisotropy([0, 0, -Dp], name='Dp')
    sim.add(anis2)
    print('Added Anisotropy 2')

    sim.set_m((1, 1, 1))

    T = 100
    ts = np.linspace(0, T, 201)
    for t in ts:
        # sim.save_vtk()
        sim.driver.run_until(t)
        print(('Running -', t))

    # sim.save_vtk()
    np.save('m0.npy', sim.spin)
Exemple #20
0
def excite_system(T=0.1, H=0.15):

    mesh = CuboidMesh(nx=28 * 3, ny=16 * 5, nz=1, pbc='2d')

    sim = Sim(mesh, name='dyn', driver='sllg')
    sim.set_options(dt=1e-14, gamma=const.gamma, k_B=const.k_B)
    sim.alpha = 0.1
    sim.mu_s = const.mu_s_1

    sim.set_m(random_m)

    J = 50 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.5 * J
    dmi = DMI(D)
    sim.add(dmi)

    Hz = H * J / const.mu_s_1
    zeeman = Zeeman([0, 0, Hz])
    sim.add(zeeman)

    sim.T = J / const.k_B * T

    ts = np.linspace(0, 5e-11, 51)
    for t in ts:
        sim.run_until(t)
        # sim.save_vtk()

    np.save('m.npy', sim.spin)
    plot_m(mesh, 'm.npy', comp='z')
Exemple #21
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)
    # sim.set_m(random_m)
    # sim.set_m(np.load('m_10000.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 3.75e-3])
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-6, max_steps=1000,
              save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #22
0
def relax_system(mesh, Hy=0):

    sim=Sim(mesh,name='relax')
    sim.set_options(rtol=1e-10,atol=1e-12)
    sim.alpha = 0.5
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.do_precession = False

    sim.set_m(init_m)
    #sim.set_m(random_m)
    #sim.set_m(np.load('m_10000.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.18
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0,Hy,2e-2],name='H')
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-8, max_steps=10000, save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy',sim.spin)
Exemple #23
0
def relax_system(mesh):

    sim = Sim(mesh, name="relax")
    sim.set_default_options(gamma=const.gamma)
    sim.alpha = 0.5
    sim.mu_s = const.mu_s_1

    sim.set_m(init_m)

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.5 * J
    dmi = DMI(D)
    sim.add(dmi)

    Hz = 0.2 * J / const.mu_s_1
    zeeman = Zeeman([0, 0, Hz])
    sim.add(zeeman)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13, stopping_dmdt=0.01 * ONE_DEGREE_PER_NS, max_steps=1000, save_m_steps=100, save_vtk_steps=50)

    np.save("m0.npy", sim.spin)
Exemple #24
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.set_default_options(gamma=const.gamma)
    sim.alpha = 0.5
    sim.mu_s = const.mu_s_1

    sim.set_m(init_m)

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.5 * J
    dmi = DMI(D)
    sim.add(dmi)

    Hz = 0.2 * J / const.mu_s_1
    zeeman = Zeeman([0, 0, Hz])
    sim.add(zeeman)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13, stopping_dmdt=0.01 * ONE_DEGREE_PER_NS,
              max_steps=1000, save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #25
0
def excite_system(mesh):

    sim = Sim(mesh, name='dyn', driver='sllg')
    sim.set_options(dt=1e-14, gamma=const.gamma, k_B=const.k_B)
    sim.alpha = 0.1
    sim.mu_s = const.mu_s_1
    sim.T = temperature_gradient

    sim.set_m(np.load("m0.npy"))

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.5 * J
    dmi = DMI(D)
    sim.add(dmi)

    Hz = 0.2 * J / const.mu_s_1
    zeeman = Zeeman([0, 0, Hz])
    sim.add(zeeman)

    dt = 2e-14 * 50  # 1e-12
    ts = np.linspace(0, 1000 * dt, 501)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
        print 'sim t=%g' % t
Exemple #26
0
def test_sim_spins(do_plot=False):

    mesh = CuboidMesh(nx=10, ny=5, nz=1)

    sim = Sim(mesh, name='10spin')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))
    print(sim.spin)

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []

    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        #print sim.t, abs(sim.spin_length()[0] - 1)
        av = sim.compute_average()
        mx.append(av[0])
        my.append(av[1])
        mz.append(av[2])

        #sim.save_vtk()

    mz = np.array(mz)
    # print mz
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print(sim.stat())

    if do_plot:
        plot(real_ts,
             mx,
             my,
             mz,
             a_mx,
             a_my,
             a_mz,
             name='spins.pdf',
             title='integrating spins')

    print(("Max Deviation = {0}".format(np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
Exemple #27
0
def test_skx_num_atomistic():
    """
    Test the *finite spin chirality* or skyrmion number for
    a discrete spins simulation in a two dimensional lattice

    The expression is (PRL 108, 017601 (2012)) :

    Q =     S_i \dot ( S_{i+1}  X  S_{j+1} )
         +  S_i \dot ( S_{i-1}  X  S_{j-1} )

    which measures the chirality taking two triangles of spins
    per lattice site i:
        S_{i} , S_{i + x} , S_{i + y}    and
        S_{i} , S_{i - x} , S_{i - y}

    The area of the two triangles cover a unit cell, thus the sum
    cover the whole area of the atomic lattice

    This test generate a skyrmion pointing down with unrealistic
    paremeters.

    """

    mesh = CuboidMesh(nx=120, ny=120, nz=1,
                      periodicity=(True, True, False))

    sim = Sim(mesh, name='skx_num')
    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(lambda pos: init_m(pos, 60, 60, 20))

    sim.do_precession = False

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.09
    dmi = DMI(D)
    sim.add(dmi)

    zeeman = Zeeman([0, 0, 5e-3])
    sim.add(zeeman)

    sim.relax(dt=2.0, stopping_dmdt=1e-2, max_steps=1000,
              save_m_steps=None, save_vtk_steps=None)

    skn = sim.skyrmion_number()
    print('skx_number', skn)
    assert skn > -1 and skn < -0.99
Exemple #28
0
def test_sim_single_spin_sllg(do_plot=False):

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='spin', driver='sllg')

    alpha = 0.1
    gamma = 2.21e5

    sim.set_options(dt=5e-15, gamma=gamma)

    sim.alpha = alpha
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-10, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        print(sim.t, abs(sim.spin_length()[0] - 1))
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)

    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    if do_plot:
        plot(real_ts,
             mx,
             my,
             mz,
             a_mx,
             a_my,
             a_mz,
             name='spin_sllg.pdf',
             title='integrating a spin')

    print(("Max Deviation = {0}".format(np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 1e-8
Exemple #29
0
def test_sim_pin():
    mesh = CuboidMesh(nx=3, ny=2, nz=1)
    sim = Sim(mesh)
    sim.set_m((0, 0.8, 0.6))
    sim.alpha = 0.1
    sim.gamma = 1.0
    sim.pins = pin_fun

    anis = Anisotropy(Ku=1.0, axis=[0, 0, 1], name='Dx')
    sim.add(anis)

    sim.run_until(1.0)
    assert sim.spin[0] == 0
    assert sim.spin[2] != 0
Exemple #30
0
def test_sim_pin():
    mesh = CuboidMesh(nx=3, ny=2, nz=1)
    sim = Sim(mesh)
    sim.set_m((0, 0.8, 0.6))
    sim.alpha = 0.1
    sim.gamma = 1.0
    sim.pins = pin_fun

    anis = Anisotropy(Ku=1.0, axis=[0, 0, 1], name='Dx')
    sim.add(anis)

    sim.run_until(1.0)
    assert sim.spin[0] == 0
    assert sim.spin[2] != 0
Exemple #31
0
def test_sim_spins(do_plot=False):

    mesh = CuboidMesh(nx=10, ny=5, nz=1)

    sim = Sim(mesh, name='10spin')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))
    print(sim.spin)

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []

    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        #print sim.t, abs(sim.spin_length()[0] - 1)
        av = sim.compute_average()
        mx.append(av[0])
        my.append(av[1])
        mz.append(av[2])

        #sim.save_vtk()

    mz = np.array(mz)
    # print mz
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print(sim.stat())

    if do_plot:
        plot(real_ts, mx, my, mz, a_mx, a_my, a_mz, name='spins.pdf', title='integrating spins')

    print(("Max Deviation = {0}".format(
        np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
Exemple #32
0
def relax_system():

    # 1D chain of 50 spins with a lattice constant of 0.27 A
    mesh = CuboidMesh(
        nx=nx,
        dx=dx,
        unit_length=1e-9,
        # pbc='1d'
    )

    # Initiate the simulation
    sim = Sim(mesh, name=sim_name)
    sim.gamma = const.gamma

    # magnetisation in units of Bohr's magneton
    sim.mu_s = 2 * const.mu_B

    # sim.set_options(gamma=const.gamma, k_B=const.k_B)

    # Initial magnetisation profile
    sim.set_m(init_m)

    # Exchange constant in Joules: E = Sum J_{ij} S_i S_j
    J = 12. * const.meV
    exch = UniformExchange(J)
    sim.add(exch)

    # DMI constant in Joules: E = Sum D_{ij} S_i x S_j
    D = 2. * const.meV
    dmi = DMI(D, dmi_type='interfacial')
    sim.add(dmi)

    # Anisotropy along +z axis
    ku = Anisotropy(Ku=0.5 * const.meV, axis=[0, 0, 1], name='ku')
    sim.add(ku)

    # Faster convergence
    sim.alpha = 0.5
    sim.do_precession = False

    sim.relax(dt=1e-13,
              stopping_dmdt=0.05,
              max_steps=700,
              save_m_steps=1000,
              save_vtk_steps=1000)

    # Save the last relaxed state
    np.save(sim_name + '.npy', sim.spin)
Exemple #33
0
def relax_system():

    # 1D chain of 50 spins with a lattice constant of 0.27 A
    mesh = CuboidMesh(nx=nx,
                  dx=dx,
                  unit_length=1e-9,
                  # pbc='1d'
                  )

    # Initiate the simulation. PBCs are specified in the mesh
    sim = Sim(mesh, name=sim_name)
    sim.gamma = const.gamma

    # magnetisation in units of Bohr's magneton
    sim.mu_s = 2. * const.mu_B

    # sim.set_options(gamma=const.gamma, k_B=const.k_B)

    # Initial magnetisation profile
    sim.set_m((0, 0, 1))

    # Exchange constant in Joules: E = Sum J_{ij} S_i S_j
    J = 12. * const.meV
    exch = UniformExchange(J)
    sim.add(exch)

    # DMI constant in Joules: E = Sum D_{ij} S_i x S_j
    D = 2. * const.meV
    dmi = DMI(D, dmi_type='interfacial')
    sim.add(dmi)

    # Anisotropy along +z axis
    ku = Anisotropy(Ku=0.5 * const.meV,
                    axis=[0, 0, 1],
                    name='ku')
    sim.add(ku)

    # Faster convergence
    sim.alpha = 0.5
    sim.do_precession = False

    sim.relax(dt=1e-13, stopping_dmdt=0.05,
              max_steps=700,
              save_m_steps=1000, save_vtk_steps=1000)

    # Save the last relaxed state
    np.save(sim_name + '.npy', sim.spin)
Exemple #34
0
def test_dw_dmi_atomistic(do_plot=False):

    mesh = CuboidMesh(nx=300, ny=1, nz=1)

    sim = Sim(mesh, name='relax')
    sim.set_default_options(gamma=const.gamma)
    sim.alpha = 0.5
    sim.mu_s = const.mu_s_1
    sim.do_precession = False

    sim.set_m(m_init_dw)

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.01 * J
    dmi = DMI(D)
    sim.add(dmi)

    K = 0.005 * J
    anis = Anisotropy(K, axis=[1, 0, 0])
    sim.add(anis)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13,
              stopping_dmdt=0.01 * ONE_DEGREE_PER_NS,
              max_steps=1000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)

    xs = np.array([p[0] for p in mesh.coordinates]) - 150

    mx, my, mz = analytical(xs, A=J / 2.0, D=-D, K=K)
    mxyz = sim.spin.copy()
    mxyz = mxyz.reshape(-1, 3).T

    assert max(abs(mxyz[0, :] - mx)) < 0.001
    assert max(abs(mxyz[1, :] - my)) < 0.001
    assert max(abs(mxyz[2, :] - mz)) < 0.0006

    if do_plot:

        save_plot(xs, mxyz, mx, my, mz)
Exemple #35
0
def relax_system(rtol=1e-10, atol=1e-12):
    """numerical solution"""
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.set_options(rtol=rtol, atol=atol)
    sim.alpha = 0.5
    sim.gamma = 2.21e5
    sim.mu_s = 1.0

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
Exemple #36
0
def relax_system(rtol=1e-10, atol=1e-12):
    """numerical solution"""
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name="relax")
    sim.set_options(rtol=rtol, atol=atol)
    sim.alpha = 0.5
    sim.gamma = 2.21e5
    sim.mu_s = 1.0

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
Exemple #37
0
def test_sim_single_spin_sllg(do_plot=False):

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='spin', driver='sllg')

    alpha = 0.1
    gamma = 2.21e5

    sim.set_options(dt=5e-15, gamma=gamma)

    sim.alpha = alpha
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-10, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        print(sim.t, abs(sim.spin_length()[0] - 1))
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)

    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    if do_plot:
        plot(real_ts, mx, my, mz, a_mx, a_my, a_mz, name='spin_sllg.pdf', title='integrating a spin')

    print(("Max Deviation = {0}".format(
        np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 1e-8
Exemple #38
0
def test_dw_dmi_atomistic(do_plot=False):

    mesh = CuboidMesh(nx=300, ny=1, nz=1)

    sim = Sim(mesh, name='relax')
    sim.set_default_options(gamma=const.gamma)
    sim.alpha = 0.5
    sim.mu_s = const.mu_s_1
    sim.do_procession = False

    sim.set_m(m_init_dw)

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.01 * J
    dmi = DMI(D)
    sim.add(dmi)

    K = 0.005 * J
    anis = Anisotropy(K, axis=[1,0,0])
    sim.add(anis)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13, stopping_dmdt=0.01 * ONE_DEGREE_PER_NS,
              max_steps=1000, save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)

    xs = np.array([p[0] for p in mesh.coordinates]) - 150

    mx, my, mz = analytical(xs, A=J/2.0, D=-D, K=K)
    mxyz = sim.spin.copy()
    mxyz = mxyz.reshape(-1, 3).T

    assert max(abs(mxyz[0, :] - mx)) < 0.001
    assert max(abs(mxyz[1, :] - my)) < 0.001
    assert max(abs(mxyz[2, :] - mz)) < 0.0006

    if do_plot:

        save_plot(xs, mxyz, mx, my, mz)
def test_sim_single_spin_vode(do_plot=False):

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='spin')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        #print sim.t, abs(sim.spin_length()[0] - 1)
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print sim.stat()

    if do_plot:
        plot(real_ts, mx, my, mz, a_mx, a_my, a_mz)

    print("Max Deviation = {0}".format(
        np.max(np.abs(mz - a_mz))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
def test_sim_single_spin_vode(do_plot=False):

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='spin')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.run_until(t)
        real_ts.append(sim.t)
        #print sim.t, abs(sim.spin_length()[0] - 1)
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print sim.stat()

    if do_plot:
        plot(real_ts, mx, my, mz, a_mx, a_my, a_mz)

    print("Max Deviation = {0}".format(np.max(np.abs(mz - a_mz))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
Exemple #41
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.alpha = 0.1

    sim.set_m(init_m)

    J = 1
    exch = UniformExchange(J)
    sim.add(exch)

    dmi = DMI(0.05 * J)
    sim.add(dmi)

    ts = np.linspace(0, 1, 11)
    for t in ts:
        print t, sim.spin_length() - 1
        sim.run_until(t)

    sim.save_vtk()

    return sim.spin
Exemple #42
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn_spin', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8, 0, -1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0, 0, 1)

    sim.u0 = 0.005
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.run_until(t)
        #sim.save_vtk()
        print t
Exemple #43
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.set_default_options(gamma=const.gamma)
    sim.alpha = 0.5
    sim.mu_s = const.mu_s_1
    sim.do_procession = False

    sim.set_m(m_init_dw)

    J = 50.0 * const.k_B
    exch = UniformExchange(J)
    sim.add(exch)

    D = 0.1 * J
    dmi = DMI(D, dmi_type='interfacial')
    sim.add(dmi)

    K = 0.02 * J
    anis = Anisotropy(K, axis=[0, 0, 1])
    sim.add(anis)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13,
              stopping_dmdt=0.01 * ONE_DEGREE_PER_NS,
              max_steps=1000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)

    xs = np.array([p[0] for p in mesh.pos]) - 150

    mx, my, mz = analytical(xs, A=J / 2.0, D=-D, K=K)
    mxyz = sim.spin.copy()
    mxyz.shape = (3, -1)

    save_plot(xs, mxyz, mx, my, mz)
Exemple #44
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.alpha = 0.1

    sim.set_m(init_m)

    J = 1
    exch = UniformExchange(J)
    sim.add(exch)

    dmi = DMI(0.05 * J)
    sim.add(dmi)

    ts = np.linspace(0, 1, 11)
    for t in ts:
        print t, sim.spin_length() - 1
        sim.run_until(t)

    sim.save_vtk()

    return sim.spin
Exemple #45
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn_spin', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8,0,-1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.u0 = 0.005
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.run_until(t)
        #sim.save_vtk()
        print t
Exemple #46
0
def single_spin(alpha=0.01):

    mat = Material()

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, driver='sllg')
    sim.alpha = alpha
    sim.gamma = mat.gamma
    sim.mu_s = mat.mu_s
    sim.T = 10000

    sim.set_m((1, 1, 1))

    #sim.add(Zeeman(1,(0, 0, 1)))

    anis = Anisotropy(mat.K, direction=(0, 0, 1))
    sim.add(anis)

    dt = 0.5e-12
    ts = np.linspace(0, 1000 * dt, 1001)

    sx = []
    sy = []
    for t in ts:
        sim.run_until(t)
        sx.append(sim.spin[0])
        sy.append(sim.spin[1])
        print(t)

    plt.plot(sx, sy)
    plt.xlabel("$S_x$")
    plt.ylabel("$S_y$")
    plt.grid()
    plt.axis((-0.9, 0.9, -0.9, 0.9))
    plt.axes().set_aspect('equal')

    plt.savefig("macrospin.pdf")
def excite_system(mesh, time=0.1, snaps=11):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    # Set the simulation parameters
    sim.driver.set_tols(rtol=1e-12, atol=1e-12)
    sim.driver.gamma = 2.211e5 / mu0
    sim.mu_s = 1e-27 / mu0
    sim.alpha = 0.05

    sim.set_m(np.load('m0.npy'))

    # Energies
    exch = UniformExchange(J=2e-20)
    sim.add(exch)

    anis = Anisotropy(0.01*2e-20, axis=(0, 0, 1))
    sim.add(anis)
    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.driver.jz = -1e12
    sim.driver.beta = 0.1

    # The simulation will run for x ns and save
    # 'snaps' snapshots of the system in the process
    ts = np.linspace(0, time * 1e-9, snaps)

    for t in ts:
        print('time', t)
        sim.driver.run_until(t)
        #sim.save_vtk()
    np.save('m1.npy', sim.spin)

    print(np.load('m1.npy')[:100])
Exemple #48
0
def excite_system(mesh, time=0.1, snaps=11):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    # Set the simulation parameters
    sim.driver.set_tols(rtol=1e-12, atol=1e-12)
    sim.driver.gamma = 2.211e5 / mu0
    sim.mu_s = 1e-27 / mu0
    sim.alpha = 0.05

    sim.set_m(np.load('m0.npy'))

    # Energies
    exch = UniformExchange(J=2e-20)
    sim.add(exch)

    anis = Anisotropy(0.01 * 2e-20, axis=(0, 0, 1))
    sim.add(anis)
    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.driver.jz = -1e12
    sim.driver.beta = 0.1

    # The simulation will run for x ns and save
    # 'snaps' snapshots of the system in the process
    ts = np.linspace(0, time * 1e-9, snaps)

    for t in ts:
        print('time', t)
        sim.driver.run_until(t)
        #sim.save_vtk()
    np.save('m1.npy', sim.spin)

    print(np.load('m1.npy')[:100])
Exemple #49
0
def single_spin(alpha=0.01):

    mat = Material()

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, driver='sllg')
    sim.alpha = alpha
    sim.gamma = mat.gamma
    sim.mu_s = mat.mu_s
    sim.T = 10000

    sim.set_m((1, 1, 1))

    #sim.add(Zeeman(1,(0, 0, 1)))

    anis = Anisotropy(mat.K, direction=(0, 0, 1))
    sim.add(anis)

    dt = 0.5e-12
    ts = np.linspace(0, 1000 * dt, 1001)

    sx = []
    sy = []
    for t in ts:
        sim.run_until(t)
        sx.append(sim.spin[0])
        sy.append(sim.spin[1])
        print(t)

    plt.plot(sx, sy)
    plt.xlabel("$S_x$")
    plt.ylabel("$S_y$")
    plt.grid()
    plt.axis((-0.9, 0.9, -0.9, 0.9))
    plt.axes().set_aspect('equal')

    plt.savefig("macrospin.pdf")
Exemple #50
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.alpha = 1.0
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(init_m)
    # sim.set_m(random_m)
    # sim.set_m(np.load('m_10000.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    Kx = Anisotropy(Ku=0.005, axis=(1, 0, 0), name='Kx')
    sim.add(Kx)

    sim.relax(dt=2.0, stopping_dmdt=1e-6, max_steps=1000,
              save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #51
0
def relax_system(mesh):

    sim = Sim(mesh, name='dmi_2d')
    sim.alpha = 0.1
    sim.gamma = 1.76e11
    sim.mu_s = 1e-22

    J = 1e-20
    exch = UniformExchange(J)
    sim.add(exch)

    dmi = DMI(0.1 * J)
    sim.add(dmi)

    sim.set_m(init_m)

    ts = np.linspace(0, 5e-10, 101)
    for t in ts:
        print(t)
        sim.run_until(t)
        #sim.save_vtk()

    return sim.spin
Exemple #52
0
def relax_system(mesh):

    sim = Sim(mesh, name="dmi_2d")
    sim.alpha = 0.1
    sim.gamma = 1.76e11
    sim.mu_s = 1e-22

    J = 1e-20
    exch = UniformExchange(J)
    sim.add(exch)

    dmi = DMI(0.1 * J)
    sim.add(dmi)

    sim.set_m(init_m)

    ts = np.linspace(0, 5e-10, 101)
    for t in ts:
        print t
        sim.run_until(t)
        # sim.save_vtk()

    return sim.spin
Exemple #53
0
def create_sim():

    mesh = CuboidMesh(nx=121,ny=121,nz=1)
    sim=Sim(mesh,name='relax')
    
    sim.alpha = 1.0
    sim.gamma = 0.5
    sim.mu_s = mu_s
    
    sim.set_m(init_m)

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)
    
    D = 0.08
    dmi = DMI(D)
    sim.add(dmi)
    
    K = 4e-3
    anis=Anisotropy(K, direction=(0,0,1),name='Ku')
    sim.add(anis)
    
    return sim