Exemple #1
0
settings.detectorSettings = {
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
    DetectorKeys.KEY_RADIUS: 4.3,
    DetectorKeys.KEY_TARGET_CHANNEL: 1,
    DetectorKeys.KEY_THRESHOLD: 3.,
    DetectorKeys.KEY_DO_MEDIAN_FILTERING: False,
}

logger.log(str('\n\nSETTINGS:'))
logger.log(str(settings))
"""
TODO Filter. Think about how and what to implement in the filter.
"""
# The displacement feature is provided by the TrackDurationAnalyzer.

settings.addTrackAnalyzer(TrackDurationAnalyzer())
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 8, True)
settings.addTrackFilter(filter2)
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 50, True)
settings.addTrackFilter(filter2)
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 160, True)
settings.addTrackFilter(filter2)

#-------------------
# Instantiate plugin
#-------------------

trackmate = TrackMate(model, settings)

#--------
# Process
Exemple #2
0
def track():
    imp = IJ.getImage()
    nChannels = imp.getNChannels()  # Get the number of channels 
    orgtitle = imp.getTitle()
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Enhance Contrast...", "saturated=0.3")
    IJ.run("Multiply...", "value=10 stack")
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Set Scale...", "distance=0")
    
    channels = ChannelSplitter.split(imp)
    imp_GFP = channels[0]
    imp_RFP = channels[1]
    IJ.selectWindow(orgtitle)
    IJ.run("Close")
    ic = ImageCalculator()
    imp_merge = ic.run("Add create stack", imp_GFP, imp_RFP)
    imp_merge.setTitle("add_channels")
    imp_merge.show()
    imp_RFP.show()
    imp_GFP.show()
    
    imp5 = ImagePlus()
    IJ.run(imp5, "Merge Channels...", "c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    print("c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    imp5.show()
    imp5 = IJ.getImage()
    
    nChannels = imp5.getNChannels()
    # Setup settings for TrackMate
    settings = Settings()
    settings.setFrom(imp5)
    
    # Spot analyzer: we want the multi-C intensity analyzer.
    settings.addSpotAnalyzerFactory(SpotMultiChannelIntensityAnalyzerFactory())   

    # Spot detector.
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
    settings.detectorSettings['TARGET_CHANNEL'] = 1
    settings.detectorSettings['RADIUS'] = 24.0
    settings.detectorSettings['THRESHOLD'] = 0.0
    
    # Spot tracker.
    # Configure tracker - We don't want to allow merges or splits
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 1
    
    # Configure track filters
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())
    
    filter1 = FeatureFilter('TRACK_DURATION', 20, True)
    settings.addTrackFilter(filter1)
    
    # Run TrackMate and store data into Model.
    model = Model()
    trackmate = TrackMate(model, settings)
    
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
            
    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    
    selectionModel = SelectionModel(model)
    displayer =  HyperStackDisplayer(model, selectionModel, imp5)
    displayer.render()
    displayer.refresh()
    
    IJ.log('TrackMate completed successfully.')
    IJ.log('Found %d spots in %d tracks.' % (model.getSpots().getNSpots(True) , model.getTrackModel().nTracks(True)))
    
    # Print results in the console.
    headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z')
    rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
    for i in range( nChannels ):
        headerStr += (' %10s' % ( 'C' + str(i+1) ) )
        rowStr += ( ' %10.1f' )
    
    #open a file to save results
    myfile = open('/home/rickettsia/Desktop/data/Clamydial_Image_Analysis/EMS_BMECBMELVA_20X_01122019/data/'+orgtitle.split('.')[0]+'.csv', 'wb')
    wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
    wr.writerow(['Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z', 'Channel_1', 'Channel_2'])
    
    IJ.log('\n')
    IJ.log(headerStr)
    tm = model.getTrackModel()
    trackIDs = tm.trackIDs(True)
    for trackID in trackIDs:
        spots = tm.trackSpots(trackID)
    
        # Let's sort them by frame.
        ls = ArrayList(spots)
        
        for spot in ls:
            values = [spot.ID(), trackID, spot.getFeature('FRAME'), \
                spot.getFeature('POSITION_X'), spot.getFeature('POSITION_Y'), spot.getFeature('POSITION_Z')]
            for i in range(nChannels):
                values.append(spot.getFeature('MEAN_INTENSITY%02d' % (i+1)))
                
            IJ.log(rowStr % tuple(values))
            l1 = (values[0], values[1], values[2], values[3], values[4], values[5], values[7], values[8])
            wr.writerow(l1)
    
    myfile.close()
    IJ.selectWindow("Merged")
    IJ.run("Close")
def track(imp):

    from fiji.plugin.trackmate import Model
    from fiji.plugin.trackmate import Settings
    from fiji.plugin.trackmate import TrackMate
    from fiji.plugin.trackmate import SelectionModel
    from fiji.plugin.trackmate import Logger
    from fiji.plugin.trackmate.detection import LogDetectorFactory
    from fiji.plugin.trackmate.tracking.sparselap import SparseLAPTrackerFactory
    from fiji.plugin.trackmate.tracking import LAPUtils
    from ij import IJ
    import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
    import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter
    import sys
    import fiji.plugin.trackmate.features.track.TrackDurationAnalyzer as TrackDurationAnalyzer

    # Get currently selected image
    #imp = WindowManager.getCurrentImage()
    #imp = IJ.openImage('http://fiji.sc/samples/FakeTracks.tif')
    #imp.show()

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 3.0,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 1.,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 30, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())

    #-------------------
    # Instantiate plugin
    #-------------------

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    selectionModel = SelectionModel(model)
    displayer = HyperStackDisplayer(model, selectionModel, imp)
    displayer.render()
    displayer.refresh()

    # Echo results with the logger we set at start:
    #model.getLogger().log(str(model))

    fm = model.getFeatureModel()
    norm_x = []
    norm_y = []
    for id in model.getTrackModel().trackIDs(True):
        track = model.getTrackModel().trackSpots(id)
        for spot in track:
            t = spot.getFeature('FRAME')

            if (t == 0.0):
                min_x = spot.getFeature('POSITION_X')
                min_y = spot.getFeature('POSITION_Y')
        for spot in track:

            norm_x.append(spot.getFeature('POSITION_X') - min_x)
            norm_y.append(spot.getFeature('POSITION_Y') - min_y)

    max_x = abs(max(norm_x, key=abs))
    max_y = abs(max(norm_y, key=abs))

    return max_x, max_y
Exemple #4
0
def magic(file):
    # We have to feed a logger to the reader.
    logger = Logger.IJ_LOGGER

    #-------------------
    # Instantiate reader
    #-------------------

    reader = TmXmlReader(File(file))
    if not reader.isReadingOk():
        sys.exit(reader.getErrorMessage())
    #-----------------
    # Get a full model
    #-----------------

    # This will return a fully working model, with everything
    # stored in the file. Missing fields (e.g. tracks) will be
    # null or None in python
    model = reader.getModel()
    # model is a fiji.plugin.trackmate.Model

    #model = Model()
    #model.setSpots(model2.getSpots(), True)

    #----------------
    # Display results
    #----------------

    # We can now plainly display the model. It will be shown on an
    # empty image with default magnification.
    sm = SelectionModel(model)
    #displayer = HyperStackDisplayer(model, sm)
    #displayer.render()

    #---------------------------------------------
    # Get only part of the data stored in the file
    #---------------------------------------------

    # You might want to access only separate parts of the
    # model.

    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))

    # If you want to get the tracks, it is a bit trickier.
    # Internally, the tracks are stored as a huge mathematical
    # simple graph, which is what you retrieve from the file.
    # There are methods to rebuild the actual tracks, taking
    # into account for everything, but frankly, if you want to
    # do that it is simpler to go through the model:

    #---------------------------------------
    # Building a settings object from a file
    #---------------------------------------

    # Reading the Settings object is actually currently complicated. The
    # reader wants to initialize properly everything you saved in the file,
    # including the spot, edge, track analyzers, the filters, the detector,
    # the tracker, etc...
    # It can do that, but you must provide the reader with providers, that
    # are able to instantiate the correct TrackMate Java classes from
    # the XML data.

    # We start by creating an empty settings object
    settings = Settings()

    # Then we create all the providers, and point them to the target model:
    detectorProvider        = DetectorProvider()
    trackerProvider         = TrackerProvider()
    spotAnalyzerProvider    = SpotAnalyzerProvider()
    edgeAnalyzerProvider    = EdgeAnalyzerProvider()
    trackAnalyzerProvider   = TrackAnalyzerProvider()

    # Ouf! now we can flesh out our settings object:
    reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider, edgeAnalyzerProvider, trackAnalyzerProvider)
    settings.detectorFactory = ManualDetectorFactory()


    # Configure tracker - We want to allow merges and fusions
    settings.initialSpotFilterValue = 0
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 40.0
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = True
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 30.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 4

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(LinearTrackDescriptor())
    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter2 = FeatureFilter('NUMBER_SPOTS', 31, True)
    settings.addTrackFilter(filter2)
    #filter3 = FeatureFilter('NUMBER_GAPS', 2, False)
    #settings.addTrackFilter(filter3)
    filter4 = FeatureFilter('NUMBER_SPLITS', 0.5, False)
    settings.addTrackFilter(filter4)


    settings.addEdgeAnalyzer(EdgeTargetAnalyzer())
    settings.addEdgeAnalyzer(EdgeTimeLocationAnalyzer())
    settings.addEdgeAnalyzer(EdgeVelocityAnalyzer())
    settings.addEdgeAnalyzer(LinearTrackEdgeStatistics())

    #-------------------
    # Instantiate plugin
    #-------------------
    logger.log(str('\n\nSETTINGS:'))
    logger.log(unicode(settings))
    print("tracking")
    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))
    logger.log(str(spots.keySet()))


    # The settings object is also instantiated with the target image.
    # Note that the XML file only stores a link to the image.
    # If the link is not valid, the image will not be found.
    #imp = settings.imp
    #imp.show()

    # With this, we can overlay the model and the source image:

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    trackmate.execInitialSpotFiltering()
    trackmate.execSpotFiltering(True)
    trackmate.execTracking()
    trackmate.computeTrackFeatures(True)
    trackmate.execTrackFiltering(True)
    trackmate.computeEdgeFeatures(True)

    outfile = TmXmlWriter(File(str(file[:-4] + ".trackmate.xml")))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    ISBIChallengeExporter.exportToFile(model, settings, File(str(file[:-4] + ".ISBI.xml")))
Exemple #5
0
def process(srcDir, dstDir, currentDir, fileName, keepDirectories):
    print "Processing:"

    # Opening the image
    print "Open image file", fileName
    imp = IJ.openImage(os.path.join(currentDir, fileName))

    #Here we make sure the calibration are correct
    units = "pixel"
    TimeUnit = "unit"

    newCal = Calibration()
    newCal.pixelWidth = 1
    newCal.pixelHeight = 1
    newCal.frameInterval = 1

    newCal.setXUnit(units)
    newCal.setYUnit(units)
    newCal.setTimeUnit(TimeUnit)
    imp.setCalibration(newCal)
    cal = imp.getCalibration()

    dims = imp.getDimensions()  # default order: XYCZT

    if (dims[4] == 1):
        imp.setDimensions(1, 1, dims[3])

# Start the tracking

    model = Model()

    #Read the image calibration
    model.setPhysicalUnits(cal.getUnit(), cal.getTimeUnit())

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DownsampleLogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_RADIUS: 2.,
        DetectorKeys.KEY_DOWNSAMPLE_FACTOR: 2,
        DetectorKeys.KEY_THRESHOLD: 1.,
    }

    print(settings.detectorSettings)

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
    settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    filter2 = FeatureFilter('TRACK_DISPLACEMENT', 10, True)
    settings.addTrackFilter(filter2)

    #-------------------
    # Instantiate plugin
    #-------------------
    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

#----------------
# Display results
#----------------
    if showtracks:
        model.getLogger().log('Found ' +
                              str(model.getTrackModel().nTracks(True)) +
                              ' tracks.')
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()


# The feature model, that stores edge and track features.
    fm = model.getFeatureModel()

    with open(dstDir + fileName + 'tracks_properties.csv', "w") as file:
        writer1 = csv.writer(file)
        writer1.writerow([
            "track #", "TRACK_MEAN_SPEED (micrometer.secs)",
            "TRACK_MAX_SPEED (micrometer.secs)", "NUMBER_SPLITS",
            "TRACK_DURATION (secs)", "TRACK_DISPLACEMENT (micrometer)"
        ])

        with open(dstDir + fileName + 'spots_properties.csv',
                  "w") as trackfile:
            writer2 = csv.writer(trackfile)
            #writer2.writerow(["spot ID","POSITION_X","POSITION_Y","Track ID", "FRAME"])
            writer2.writerow(
                ["Tracking ID", "Timepoint", "Time (secs)", "X pos", "Y pos"])

            for id in model.getTrackModel().trackIDs(True):

                # Fetch the track feature from the feature model.
                v = (fm.getTrackFeature(id, 'TRACK_MEAN_SPEED') *
                     Pixel_calibration) / Time_interval
                ms = (fm.getTrackFeature(id, 'TRACK_MAX_SPEED') *
                      Pixel_calibration) / Time_interval
                s = fm.getTrackFeature(id, 'NUMBER_SPLITS')
                d = fm.getTrackFeature(id, 'TRACK_DURATION') * Time_interval
                e = fm.getTrackFeature(
                    id, 'TRACK_DISPLACEMENT') * Pixel_calibration
                model.getLogger().log('')
                model.getLogger().log('Track ' + str(id) +
                                      ': mean velocity = ' + str(v) + ' ' +
                                      model.getSpaceUnits() + '/' +
                                      model.getTimeUnits())

                track = model.getTrackModel().trackSpots(id)
                writer1.writerow(
                    [str(id), str(v),
                     str(ms), str(s),
                     str(d), str(e)])

                for spot in track:
                    sid = spot.ID()
                    x = spot.getFeature('POSITION_X')
                    y = spot.getFeature('POSITION_Y')
                    z = spot.getFeature('TRACK_ID')
                    t = spot.getFeature('FRAME')
                    time = int(t) * int(Time_interval)
                    writer2.writerow(
                        [str(id), str(t),
                         str(time), str(x),
                         str(y)])
def processImages(cfg, wellName, wellPath, images):
    firstImage = IJ.openImage(images[0][0][0][0])
    imgWidth = firstImage.getWidth()
    imgHeight = firstImage.getHeight()

    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(
                ELMConfig.chansToSkip):
            continue
        imColorSeq = ImageStack(imgWidth, imgHeight)
        imSeq = ImageStack(imgWidth, imgHeight)
        totalHist = []
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            for t in range(0, cfg.getValue(ELMConfig.numT)):

                currIP = IJ.openImage(images[c][z][t][0])
                imColorSeq.addSlice(currIP.duplicate().getProcessor())

                currIP = ELMImageUtils.getGrayScaleImage(
                    currIP, c, chanName, cfg)

                imSeq.addSlice(currIP.getProcessor())
                imgStats = currIP.getStatistics()
                currHist = imgStats.getHistogram()
                if not totalHist:
                    for i in range(len(currHist)):
                        totalHist.append(currHist[i])
                else:
                    for i in range(len(currHist)):
                        totalHist[i] += currHist[i]

        if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue(
                ELMConfig.thresholdFromWholeRange) == True:
            threshMethod = "Otsu"  # Default works very poorly for this data
            if cfg.hasValue(ELMConfig.thresholdMethod):
                threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
            thresholder = AutoThresholder()
            computedThresh = thresholder.getThreshold(threshMethod, totalHist)
            cfg.setValue(ELMConfig.imageThreshold, computedThresh)
            print("\tComputed threshold from total hist (" + threshMethod +
                  "): " + str(computedThresh))
            print()
        else:
            print("\tUsing threshold computed on individual images!")
            print()
            computedThresh = 0

        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        imp = ImagePlus()
        imp.setStack(imSeq)
        imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        imp.setTitle(wellName + ", channel " + str(c))

        impColor = ImagePlus()
        impColor.setStack(imColorSeq)
        impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        impColor.setTitle(wellName + ", channel " + str(c) + " (Color)")

        #----------------------------
        # Create the model object now
        #----------------------------

        # Some of the parameters we configure below need to have
        # a reference to the model at creation. So we create an
        # empty model now.

        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        pa_features = [
            "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X",
            "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major",
            "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew",
            "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret",
            "AR", "Round", "Solidity"
        ]

        featureNames = {}
        featureShortNames = {}
        featureDimensions = {}
        isInt = {}
        for feature in pa_features:
            featureNames[feature] = feature
            featureShortNames[feature] = feature
            featureDimensions[feature] = Dimension.STRING
            isInt[feature] = False

        model.getFeatureModel().declareSpotFeatures(pa_features, featureNames,
                                                    featureShortNames,
                                                    featureDimensions, isInt)

        #------------------------
        # Prepare settings object
        #------------------------

        settings = Settings()
        settings.setFrom(imp)

        dbgPath = os.path.join(wellPath, 'debugImages_' + chanName)
        if not os.path.exists(dbgPath):
            os.makedirs(dbgPath)

        if cfg.hasValue(ELMConfig.thresholdMethod):
            threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
        else:
            threshMethod = "Default"

        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = ThresholdDetectorFactory()
        settings.detectorSettings = {
            'THRESHOLD': computedThresh,
            'ABOVE': True,
            'DEBUG_MODE': True,
            'DEBUG_OUTPATH': dbgPath,
            'THRESHOLD_METHOD': threshMethod
        }

        #settings.detectorFactory = LocalThresholdDetectorFactory()
        #settings.detectorSettings = {
        #    'THRESHOLD' : computedThresh,
        #    'DEBUG_MODE' : True,
        #    'DEBUG_OUTPATH' : dbgPath
        #}

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 150, True)
        settings.addSpotFilter(filter1)

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough

        # Linking
        settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0
        # in pixels

        linkFeaturePenalties = HashMap()
        linkFeaturePenalties['Area'] = 1.0
        linkFeaturePenalties['POSITION_X'] = 1.0
        linkFeaturePenalties['POSITION_Y'] = 1.0
        #linkFeaturePenalties['Circ.'] = 1.0
        #linkFeaturePenalties['Mean'] = 1.0

        settings.trackerSettings[
            TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties
        # Gap closing
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True
        settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8
        settings.trackerSettings[
            TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES));
        # Track splitting
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False
        settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES));
        # Track merging
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True
        settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES));
        # Others
        settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf")
        settings.trackerSettings[
            TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05
        settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9

        # Configure track analyzers - Later on we want to filter out tracks
        # based on their displacement, so we need to state that we want
        # track displacement to be calculated. By default, out of the GUI,
        # no features are calculated.

        # The displacement feature is provided by the TrackDurationAnalyzer.
        settings.addTrackAnalyzer(TrackDurationAnalyzer())
        settings.addTrackAnalyzer(TrackBranchingAnalyzer())
        settings.addTrackAnalyzer(TrackIndexAnalyzer())
        settings.addTrackAnalyzer(TrackLocationAnalyzer())
        settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

        # Configure track filters - We want to get rid of the two immobile spots at
        # the bottom right of the image. Track displacement must be above 10 pixels.
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)

        #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo())

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)
        trackmate.setNumThreads(1)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        print("Processing " + chanName + "...")
        ok = trackmate.process()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        #----------------
        # Display results
        #----------------
        print("Rendering...")

        # Set spot names based on track IDs
        # This allows track IDs to be displayed in the rendered video
        for tId in model.getTrackModel().trackIDs(True):
            trackSpots = model.getTrackModel().trackSpots(tId)
            for spot in trackSpots:
                spot.setName(str(tId))

        # Determine sub-tracks within a track
        # Since tracks can merge, we want to keep track of which track a spot is
        # in prior to the merge
        spotToSubTrackMap = {}
        spotIt = model.getSpots().iterator(False)
        trackModel = model.getTrackModel()
        subTrackCount = {}
        while spotIt.hasNext():
            spot = spotIt.next()
            spotEdges = trackModel.edgesOf(spot)
            # Find merge points within a track: ignore spots with fewer than 2 edges
            if (len(spotEdges) < 2):
                continue

            # We have a merge if we have multiple incoming edges
            incomingEdges = 0
            edgeIt = spotEdges.iterator()
            ancestorSpots = []
            while edgeIt.hasNext():
                edge = edgeIt.next()
                src = trackModel.getEdgeSource(edge)
                dst = trackModel.getEdgeTarget(edge)
                if dst.ID() == spot.ID():
                    ancestorSpots.append(src)
                    incomingEdges += 1
            # Ignore non-merges
            if incomingEdges < 2:
                continue

            trackId = trackModel.trackIDOf(spot)
            if trackId in subTrackCount:
                subTrackId = subTrackCount[trackId]
            else:
                subTrackId = 1
            for ancestorSpot in ancestorSpots:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap,
                                       ancestorSpot, subTrackId, trackId,
                                       False)
                subTrackId += 1
            subTrackCount[trackId] = subTrackId

        # Spots after the last merge still need to be labeled
        for tId in trackModel.trackIDs(True):
            trackSpots = trackModel.trackSpots(tId)
            spotIt = trackSpots.iterator()
            lastSpot = None
            while spotIt.hasNext():
                spot = spotIt.next()
                outgoingEdges = 0
                spotEdges = trackModel.edgesOf(spot)
                edgeIt = spotEdges.iterator()
                while edgeIt.hasNext():
                    edge = edgeIt.next()
                    src = trackModel.getEdgeSource(edge)
                    dst = trackModel.getEdgeTarget(edge)
                    if src.ID() == spot.ID():
                        outgoingEdges += 1
                if outgoingEdges == 0 and len(spotEdges) > 0:
                    lastSpot = spot

            if tId in subTrackCount:
                subTrackId = subTrackCount[tId]
            else:
                subTrackId = 1
            if not lastSpot == None:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot,
                                       subTrackId, tId, True)

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n')
        for spotId in spotToSubTrackMap:
            trackFile.write(
                str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) +
                '\n')
        trackFile.close()

        # Write Edge Set
        trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv")
        trackFile = open(trackOut, 'w')
        trackFile.write('Track Id, Spot Id, Spot Id \n')
        edgeIt = trackModel.edgeSet().iterator()
        while edgeIt.hasNext():
            edge = edgeIt.next()
            src = trackModel.getEdgeSource(edge)
            dst = trackModel.getEdgeTarget(edge)
            trackId = trackModel.trackIDOf(edge)
            srcSubTrack = spotToSubTrackMap[src.ID()][0]
            dstSubTrack = spotToSubTrackMap[dst.ID()][0]
            if not srcSubTrack == dstSubTrack:
                trackFile.write(
                    str(trackId) + ', ' + str(src.ID()) + ', ' +
                    str(dst.ID()) + '\n')
        trackFile.close()

        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, impColor)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_COLORING,
            PerTrackFeatureColorGenerator(model,
                                          TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_SPOT_COLORING,
            SpotColorGeneratorPerTrackFeature(model,
                                              TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES,
                                     True)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_MODE,
            TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2)
        displayer.render()
        displayer.refresh()

        trackmate.getSettings().imp = impColor
        coa = CaptureOverlayAction(None)
        coa.execute(trackmate)

        WindowManager.setTempCurrentImage(coa.getCapture())
        IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi"))

        imp.close()
        impColor.close()
        displayer.clear()
        displayer.getImp().hide()
        displayer.getImp().close()
        coa.getCapture().hide()
        coa.getCapture().close()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

        # The feature model, that stores edge and track features.
        fm = model.getFeatureModel()

        # Write output for tracks
        numTracks = model.getTrackModel().trackIDs(True).size()
        print "Writing track data for " + str(numTracks) + " tracks."
        trackDat = {}
        for tId in model.getTrackModel().trackIDs(True):
            track = model.getTrackModel().trackSpots(tId)

            # Ensure track spots dir exists
            trackOut = os.path.join(wellPath, chanName + "_track_spots")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')

            # Write Header
            header = 'Name, ID, Frame, '
            for feature in track.toArray()[0].getFeatures().keySet():
                if feature == 'Frame':
                    continue
                header += feature + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)
            # Write spot data
            avgTotalIntensity = 0
            for spot in track:
                #print spot.echo()
                data = [
                    spot.getName(),
                    str(spot.ID()),
                    str(spot.getFeature('FRAME'))
                ]
                for feature in spot.getFeatures():
                    if feature == 'Frame':
                        continue
                    elif feature == 'TOTAL_INTENSITY':
                        avgTotalIntensity += spot.getFeature(feature)
                    data.append(str(spot.getFeature(feature)))
                trackFile.write(','.join(data) + '\n')
            trackFile.close()
            avgTotalIntensity /= len(track)

            # Write out track stats
            # Make sure dir exists
            trackOut = os.path.join(wellPath, chanName + "_tracks")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')
            # Fetch the track feature from the feature model.
            header = ''
            for featName in fm.getTrackFeatureNames():
                header += featName + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)

            features = ''
            for featName in fm.getTrackFeatureNames():
                features += str(fm.getTrackFeature(tId, featName)) + ', '
            features = features[0:len(features) - 2]
            features += '\n'
            trackFile.write(features)
            trackFile.write('\n')
            trackFile.close()

            trackDat[tId] = [
                str(tId),
                str(fm.getTrackFeature(tId, 'TRACK_DURATION')),
                str(avgTotalIntensity),
                str(fm.getTrackFeature(tId, 'TRACK_START')),
                str(fm.getTrackFeature(tId, 'TRACK_STOP'))
            ]

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write(
            'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n'
        )
        for track in trackDat:
            trackFile.write(','.join(trackDat[track]) + '\n')
        trackFile.close()

        trackOut = os.path.join(wellPath, chanName + "_trackModel.xml")
        trackFile = File(trackOut)
        writer = TmXmlWriter(trackFile, model.getLogger())
        #writer.appendLog( logPanel.getTextContent() );
        writer.appendModel(trackmate.getModel())
        writer.appendSettings(trackmate.getSettings())
        #writer.appendGUIState( controller.getGuimodel() );
        writer.writeToFile()

    model.clearSpots(True)
    model.clearTracks(True)

    return trackDat
Exemple #7
0
def track_cells(folder_w, filename, imp, correction):
    #imp = IJ.openImage(os.path.join(folder,filename))
    #imp.show()

    #get image dimensions, set ROI remove part of flouresncent ring
    x_size = ImagePlus.getDimensions(imp)[0]
    y_size = ImagePlus.getDimensions(imp)[1]
    x_start = 0
    y_start = 0
    #calculate alternative ROI
    if crop_ring:
        x_start = 170 / 2
        y_start = 170 / 2
        x_size = x_size - 170
        y_size = y_size - 170
    print(
        str(x_start) + ", " + str(y_start) + ", " + str(x_size) + ", " +
        str(y_size))
    imp.setRoi(OvalRoi(x_start, y_start, x_size, y_size))
    #imp_dup = imp.duplicate()
    #imp_dup.show()
    #red_corrected_img.show()

    IJ.run(imp, "Make Inverse", "")
    IJ.setForegroundColor(0, 0, 0)
    IJ.run(imp, "Fill", "stack")
    imp.killRoi()

    #imp.show()
    #sys.exit()

    #img_filename = filename+"_corrected_red_stack.tif"
    #folder_filename= os.path.join(well_folder,img_filename)
    #IJ.save(imp, folder_filename)

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': SUBPIXEL_LOCALIZATION,
        'RADIUS': RADIUS,
        'TARGET_CHANNEL': TARGET_CHANNEL,
        'THRESHOLD': THRESHOLD,
        'DO_MEDIAN_FILTERING': MEDIAN_FILTERING,
    }

    # Configure spot filters - Classical filter on quality
    settings.initialSpotFilterValue = SPOT_FILTER
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotMorphologyAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotRadiusEstimatorFactory())

    filter1 = FeatureFilter('QUALITY', QUALITY, True)
    filter2 = FeatureFilter('CONTRAST', CONTRAST, True)
    filter2a = FeatureFilter('ESTIMATED_DIAMETER', MAX_ESTIMATED_DIAMETER,
                             False)
    filter2b = FeatureFilter('MEDIAN_INTENSITY', MAX_MEDIAN_INTENSITY, False)

    settings.addSpotFilter(filter1)
    settings.addSpotFilter(filter2)
    settings.addSpotFilter(filter2a)
    settings.addSpotFilter(filter2b)
    print(settings.spotFilters)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough

    ##adapted from https://forum.image.sc/t/trackmate-scripting-automatically-exporting-spots-in-tracks-links-in-tracks-tracks-statistics-and-branching-analysis-to-csv/6256
    #linking settings
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    if LINKING_FEATURE_PENALTIES == True:
        settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {
            LINKING_FEATURE_PENALTIES_TYPE: LINKING_FEATURE_PENALTIES_VALUE
        }
    else:
        settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {}

    #gap closing settings
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = ALLOW_GAP_CLOSING
    if ALLOW_GAP_CLOSING == True:
        settings.trackerSettings[
            'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
        settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP
        if GAP_CLOSING_FEATURE_PENALTIES == True:
            settings.trackerSettings['GAP_CLOSING_FEATURE_PENALTIES'] = {
                GAP_CLOSING_FEATURE_PENALTIES_TYPE:
                GAP_CLOSING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['GAP_CLOSING_FEATURE_PENALTIES'] = {}

    #splitting settings
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    if ALLOW_TRACK_SPLITTING == True:
        settings.trackerSettings[
            'SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
        if SPLITTING_FEATURE_PENALTIES == True:
            settings.trackerSettings['SPLITTING_FEATURE_PENALTIES'] = {
                SPLITTING_FEATURE_PENALTIES_TYPE:
                SPLITTING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['SPLITTING_FEATURE_PENALTIES'] = {}

    #merging settings
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    if ALLOW_TRACK_MERGING == True:
        settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
        if MERGING_FEATURE_PENALTIES == True:
            settings.trackerSettings['MERGING_FEATURE_PENALTIES'] = {
                MERGING_FEATURE_PENALTIES_TYPE: MERGING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['MERGING_FEATURE_PENALTIES'] = {}

    print(settings.trackerSettings)

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())

    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter3 = FeatureFilter('TRACK_DISPLACEMENT', TRACK_DISPLACEMENT, True)
    filter4 = FeatureFilter('TRACK_START', TRACK_START, False)
    #filter5 = FeatureFilter('TRACK_STOP', float(imp.getStack().getSize())-1.1, True)

    settings.addTrackFilter(filter3)
    settings.addTrackFilter(filter4)
    #settings.addTrackFilter(filter5)

    #-------------------
    # Instantiate plugin
    #-------------------

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()

    #	if not ok:
    #sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    #Set output folder and filename and create output folder
    well_folder = os.path.join(folder_w, filename)
    output_folder = os.path.join(well_folder, "Tracking")
    create_folder(output_folder)
    xml_file_name = filename + "_" + correction + "_trackmate_analysis.xml"
    folder_filename_xml = os.path.join(output_folder, xml_file_name)

    #ExportTracksToXML.export(model, settings, File(folder_filename_xml))
    outfile = TmXmlWriter(File(folder_filename_xml))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    # Echo results with the logger we set at start:
    #model.getLogger().log(str(model))

    #create araray of timepoint length with filled 0
    cell_counts = zerolistmaker(imp.getStack().getSize())
    if ok:
        for id in model.getTrackModel().trackIDs(True):
            # Fetch the track feature from the feature model.
            track = model.getTrackModel().trackSpots(id)
            for spot in track:
                # Fetch spot features directly from spot.
                t = spot.getFeature('FRAME')
                print(t)
                cell_counts[int(t)] = cell_counts[int(t)] + 1
    else:
        print("No spots detected!")

    if HEADLESS == False:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
    del imp
    return (cell_counts + [len(model.getTrackModel().trackIDs(True))])
Exemple #8
0
def run_trackmate(imp, path, filename, params, batch_mode=False):
    # initialize trackmate model
    model = Model()

    # Set logger - use to see outputs, not needed in batch mode
    model.setLogger(Logger.IJ_LOGGER)

    # Create setting object from image
    settings = Settings()
    settings.setFrom(imp)

    cal = imp.getCalibration()
    model.setPhysicalUnits("micron", "sec")

    # Configure detector
    settings.detectorFactory = LogDetectorFactory()
    #    settings.detectorFactory = DogDetectorFactory()

    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': params.do_subpixel_localization,
        'RADIUS': params.radius,
        'TARGET_CHANNEL': 0,
        'THRESHOLD': params.threshold,
        'DO_MEDIAN_FILTERING': params.do_median_filtering,
    }

    #    print(params)

    # Add spot filters
    filter_quality = FeatureFilter('QUALITY', params.quality, True)
    settings.addSpotFilter(filter_quality)
    filter_snr = FeatureFilter('SNR', params.snr, True)
    settings.addSpotFilter(filter_snr)

    # Compute spot features
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

    # Compute track features
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackLocationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())

    # Update model
    ModelFeatureUpdater(model, settings)

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings[
        'LINKING_MAX_DISTANCE'] = params.linking_max_distance
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = params.gap_closing_max_distance
    settings.trackerSettings['MAX_FRAME_GAP'] = params.max_frame_gap

    # Add track filters
    filter_T1 = FeatureFilter('TRACK_DURATION', params.track_duration, True)
    filter_MTD = FeatureFilter('TRACK_DISPLACEMENT', params.track_displacement,
                               True)

    settings.addTrackFilter(filter_T1)
    settings.addTrackFilter(filter_MTD)

    # Instantiate trackmate
    trackmate = TrackMate(model, settings)

    # Execute all

    ok = trackmate.checkInput()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    filename = os.path.splitext(filename)[0]  #filename without extension
    outFile = File(os.path.join(path, filename + "_Tracks.xml"))
    ExportTracksToXML.export(model, settings, outFile)
    #imp.close()

    tm_writer = TmXmlWriter(File(os.path.join(path, filename + "_TM.xml")))
    tm_writer.appendModel(model)
    tm_writer.appendSettings(settings)
    tm_writer.writeToFile()

    if not batch_mode:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))