Exemple #1
0
def training_data_generator(coco, start_index, num_images, bounding_box_count,
                            cell_width_px, cell_height_px, batch_size):
    img_ids = get_downloaded_ids()
    img_ids = list(filter(is_not_greyscale, img_ids))[:num_images]
    while 1:
        for img_id in img_ids:
            image_batch = np.empty((batch_size, 640, 640, 3),
                                   np.float)  #hard code
            y_true_batch = np.empty((batch_size, 10, 10, 5),
                                    np.float)  #hard code
            for i in range(batch_size):
                image = file_management.get_image(img_id)
                image = np.divide(image, 256, dtype=np.float32)
                try:
                    image = pad_image(image, PADDED_SIZE)
                except Exception as e:
                    print(id)
                    raise e
                ground_truth = get_y_true(coco, bounding_box_count,
                                          cell_width_px, cell_height_px,
                                          img_id)
                image_batch[i, :, :, :] = image
                y_true_batch[i, :, :, :] = ground_truth

            yield (image_batch, y_true_batch)
Exemple #2
0
def image_generator(image_ids, buffer_size=0):
    for id in image_ids:
        image = file_management.get_image(id)
        image = np.divide(image, 256, dtype=np.float32)
        try:
            image = pad_image(image, PADDED_SIZE)
        except Exception as e:
            print(id)
            raise e
        yield image
def plot_annotations(img_id, annotations, color='r'):
    img = get_image(img_id)
    fig, ax = plt.subplots()
    ax.imshow(img)
    for ann in annotations:
        rect_patch = patches.Rectangle((ann['bbox'][0], ann['bbox'][1]),
                                       ann['bbox'][2],
                                       ann['bbox'][3],
                                       linewidth=2,
                                       edgecolor=ann.get('color', color),
                                       facecolor='none')
        ax.add_patch(rect_patch)
    plt.show()
)
args = vars(ap.parse_args())

# load the trained convolutional neural network
print("[INFO] loading network...")
# Load in the custom loss function
get_custom_objects().update({"QueueTime_loss": QueueTime_loss})

model = load_model(args["model"])

img_ids = args["image_ids"]
if args['all']:
    img_ids = filter(is_not_greyscale, get_downloaded_ids())

for img_id in img_ids:
    image = pad_image(get_image(img_id), PADDED_SIZE)
    image = np.expand_dims(image, axis=0)

    # classify the input image
    print("[INFO] classifying image...")
    y_pred = model.predict(image)[0]
    # post_pred = QueueTime_post_process(y_pred)
    post_pred = cnn_y_to_absolute(CELL_WIDTH, CELL_HEIGHT, y_pred)

    # filter out all scores below threshold:
    post_pred_filtered = list(
        filter(lambda ann: ann['score'] > 0.001, post_pred))

    # Add color key:
    scores = [ann['score'] for ann in post_pred_filtered]
    normalize_score = lambda score: (score - min(scores)) / (max(scores) - min(
Exemple #5
0
def is_not_greyscale(img_id):
    img = get_image(img_id)
    return img.ndim == 3