def vari_confidence_ER(z, cutoff): x, y = vari_confidence_mult(z, cutoff, 0) x = np.array(x) b, m = polyfit(x, y, 1) plt.plot(x, y, 'ro', markersize=3) save_plot_custom("confidence ER") plt.clf()
def loss(history): history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] epochs = range(1, len(loss_values) + 1) plt.plot(epochs, loss_values, 'bo', label='Training loss') plt.plot(epochs, val_loss_values, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() save_plot_custom("Loss")
def accuracy(history): history_dict = history.history acc_values = history_dict['acc'] val_acc_values = history_dict['val_acc'] plt.clf() loss_values = history_dict['loss'] epochs = range(1, len(loss_values) + 1) plt.plot(epochs, acc_values, 'bo', label='Training acc') plt.plot(epochs, val_acc_values, 'b', label='Validation acc') plt.title('Training and validation Accuracy') plt.xlabel('Epochs') plt.ylabel('acc') plt.legend() save_plot_custom("Accuracy")
def colored_contamination_ER(sizes, predictions, labels, cutoff): predictions = predictions.reshape(predictions.shape[0], ) dset = list(zip(sizes, predictions, labels)) bins, conf = vari_confidence_mult(dset, cutoff, ER_LABEL) contamination = [] acontamination = [] for i in range(len(bins)): contamination = contamination + list( filter( lambda z: z[0] == bins[i] and z[1] < conf[i] and z[2] == NR_LABEL, dset)) acontamination = acontamination + list( filter( lambda z: z[0] == bins[i] and z[1] > conf[i] and z[2] == NR_LABEL, dset)) if contamination: x = list(zip(*contamination))[0] y1 = list(zip(*contamination))[1] else: x, y1 = [], [] if acontamination: ax = list(zip(*acontamination))[0] ay1 = list(zip(*acontamination))[1] else: ax, ay1 = [], [] plt.plot(x, y1, 'go', markersize=3, label='NR in ' + str(cutoff) + ' ER confidence') plt.plot(ax, ay1, 'bo', markersize=3, label='NR outside ' + str(cutoff) + ' ER confidence') plt.plot(bins, conf, 'ro', markersize=3, label=str(cutoff) + ' ER confidence') plt.legend(loc='best') save_plot_custom("colored_contamination_ER") plt.clf()
def NR_contamination(sizes, predictions, labels, cutoff): predictions = predictions.reshape(predictions.shape[0], ) dset = list(zip(sizes, predictions, labels)) bins, conf = vari_confidence_mult(dset, 1 - cutoff, NR_LABEL) contamination = [] for i in range(len(bins)): contamination = contamination + [ len( list( filter( lambda z: z[0] == bins[i] and z[1] > conf[i] and z[2] == ER_LABEL, dset))) ] plt.plot(bins, contamination, 'go', markersize=3, label='Number of contamination points') plt.legend(loc='best') save_plot_custom("contamination_NR " + str(sum(contamination)) + " contamination points") plt.clf()