def processWikipediaOscarFiles(procYear = None): outdir = getWikipediaDir() if procYear == None: files = findSubExt(outdir, "data", ext=".p") #files = glob(join(outdir, "data", "*.p")) else: files = findSubPatternExt(outdir, "data", pattern=str(procYear), ext=".p") #files = glob(join(outdir, "data", str(procYear)+".p")) movies = OrderedDict() for ifile in files: print ifile year = getBaseFilename(ifile) print year #if year == "1985": continue htmldata = get(ifile) bsdata = getHTML(htmldata) if int(year) <= 1984: results = parseWikipediaOscarDataPre1985(bsdata, True) elif int(year) >= 1986: results = parseWikipediaOscarDataPost1987(bsdata, True) else: results = parseWikipediaOscarData1985(debug = True) movies[year] = results for k,v in results.iteritems(): print "====>",year,'\t',k print " Winner :",results[k]["Winner"] print " Nominees:",results[k]["Nominees"] print "" savename = setFile(outdir, "oscars.yaml") print "Saving",len(movies),"years of wikipedia oscar data to",savename save(savename, movies)
def getOscarData(): filename = setFile(getOscarDir(), "oscars.yaml") data = get(filename) yearlyData = {} for year,ydata in data.iteritems(): movies = {} for category,categorydata in ydata.iteritems(): if category.find("Song") != -1: continue sf = 1 if category.find("Song") != -1: sf = 0 elif category.find("Picture") != -1: sf = 40 elif category.find("Animated Feature") != -1: sf = 35 elif category.find("Director") != -1: sf = 30 elif category.find("Actor") != -1 or category.find("Actress") != -1: sf = 25 elif category.find("Screenplay") != -1: sf = 20 winner = categorydata.get("Winner") if winner: #print category,'\t',winner if isinstance(winner, list): movie = winner[0] else: movie = winner #print category,'\t',10*sf,'\t',winner if movies.get(movie) == None: movies[movie] = 10*sf else: movies[movie] = max(10*sf, movies[movie]) nominees = categorydata.get("Nominees") if nominees: for nominee in nominees: if isinstance(nominee, list): movie = nominee[0] else: movie = nominee #print category,'\t',sf,'\t',winner if movies.get(movie) == None: movies[movie] = sf else: movies[movie] = max(sf, movies[movie]) yearlyData[year] = sorted(movies.items(), key=operator.itemgetter(1), reverse=True) print "---->",year,"<----" for item in yearlyData[year][:15]: print item print '\n' savename = setFile(getOscarDir(), "oscars.json") print "Saving",len(yearlyData),"yearly results to",savename save(savename, yearlyData)
def processBoxOfficeMojo(): outdir = getBoxOfficeDir() savename = setFile(outdir, "results.json") data = get(savename) movies = {} yearlyData = {} for i,year in enumerate(data.keys()): movies[year] = {} ydata = data[year] for wdata in ydata: for mdata in wdata: movie = mdata[2] retval = search("\((\d+)\)",movie) if retval: stryear = retval.group() movie = movie.replace(stryear, "").strip() gross = convertCurrency(mdata[9]) weekly = convertCurrency(mdata[4]) money = max(gross, weekly) if movies[year].get(movie) == None: movies[year][movie] = money else: movies[year][movie] = max(money, movies[year][movie]) yearlyData[year] = sorted(movies[year].items(), key=operator.itemgetter(1), reverse=True) print "---->",year,"<----" for item in yearlyData[year][:25]: print item print '\n' savename = setFile(outdir, "boxofficemojo.json") print "Saving",len(yearlyData),"yearly results to",savename save(savename, yearlyData)
def woerter_lernen(indizes, tdn, wbn): wb = fileio.wb_laden(wbn) worte = fehlerabschnitt.fa.worte_finden(indizes) wb.extend(worte) fileio.save(wbn, wb) fehlerabschnitt.fa.fehlerworte = [x for x in fehlerabschnitt.fa.fehlerworte if x not in worte] zeilendialog.anzeigen(fa = fehlerabschnitt.fa, tdn = tdn, wbn = wbn)
def new_task(args): name = ' '.join(args.name) if not name: print(INVALID_NAME_MSG) return date_str = args.date if date_str: try: date = interpret_date(date_str) except ValueError as e: print(e) return else: date = None estimated_hours = float(args.est_hours) manager = TaskManager(fileio.load()) id = manager.new_task(name, estimated_hours, date) fileio.save(manager.task_dict) print_table(manager, id)
def correctOscarData(): print "Checking for unparsed oscar data." backupfilename = setFile(getWikipediaDir(), "oscars.yaml.backup") filename = setFile(getWikipediaDir(), "oscars.yaml") copyFile(filename, backupfilename) data = get(filename) #fixes = {} for year,ydata in data.iteritems(): print "\n==>",year for cat,catdata in ydata.iteritems(): winner = catdata["Winner"] if isinstance(winner, list): if winner[0].find(",") != -1: print "\t",cat,"\t",winner[0] nominees = catdata["Nominees"] for nominee in nominees: if isinstance(nominee, list): if nominee[0].find(",") != -1: print "\t",cat,"\t",nominee[0] savename = setFile(getOscarDir(), "oscars.yaml") print "Saving",len(data),"yearly results to",savename save(savename, data)
def woerter_lernen(indizes, tdn, wbn): wb = fileio.wb_laden(wbn) worte = fehlerabschnitt.fa.worte_finden(indizes) wb.extend(worte) fileio.save(wbn, wb) fehlerabschnitt.fa.fehlerworte = [ x for x in fehlerabschnitt.fa.fehlerworte if x not in worte ] zeilendialog.anzeigen(fa=fehlerabschnitt.fa, tdn=tdn, wbn=wbn)
def save(self, fname='save.dcb'): '''Cleans everything up (play back, recording, etc), and saves the current lecture and audio. If there is no set filename, uses the GUI to ask the user where they would like the file saved. (Their answer will effect the format of the save.''' # TODO check if this is dirty. if self.is_recording(): self.record(False) fileio.save(fname, self.lec) self.gui.canvas.dirty = False
def save(self, fname = 'save.dcb'): '''Cleans everything up (play back, recording, etc), and saves the current lecture and audio. If there is no set filename, uses the GUI to ask the user where they would like the file saved. (Their answer will effect the format of the save.''' # TODO check if this is dirty. if self.is_recording(): self.record(False) fileio.save(fname, self.lec) self.gui.canvas.dirty = False
def mergeBoxOfficeMojoResults(): outdir = getBoxOfficeDir() retval = {} files = findSubExt(outdir, "results", ext=".json") for ifile in files: year = getBaseFilename(ifile) data = get(ifile) retval[year] = data savename = setFile(outdir, "results.json") print "Saving",len(retval),"years of movie data to",savename save(savename, retval)
def mergeYearlyMovies(outdir, yearlyMovies): data = OrderedDict() for year,ymovies in yearlyMovies.iteritems(): data[year] = {} for movie,movieType in ymovies.iteritems(): if data[year].get(movieType) == None: data[year][movieType] = {} data[year][movieType][movie] = None savename = setFile(outdir, "officialMovies.yaml") print "Saving",len(data),"to",savename save(savename, data)
def clock(args): manager = TaskManager(fileio.load()) task_id = args.id to_deduct = args.to_deduct # TODO Complete if less than/eq 0? try: old_task: task.Task = manager.task_dict[task_id] old_task.hours_remaining -= to_deduct fileio.save(manager.task_dict) print_table(manager, task_id) except KeyError: print(INVALID_ID_MSG)
def parseBoxOfficeMojoResults(startYear = 1982, endYear = 2017): outdir = getBoxOfficeDir() if endYear == None: endYear = startYear years = range(int(startYear), int(endYear)+1) for year in years: retval = [] files = findSubPatternExt(outdir, "data", pattern=str(year), ext=".p") for ifile in files: result = parseBoxOfficeMojo(ifile) retval.append(result) savename = setSubFile(outdir, "results", str(year)+".json") print "Saving",len(retval),"weekends of movie data to",savename save(savename, retval)
def complete_task(args): manager = TaskManager(fileio.load()) ids = args.id if not ids: print(INVALID_ID_MSG) else: completed_tasks_dict = dict() for i in ids: try: completed_tasks_dict[i] = manager.task_dict[i] manager.complete(i) fileio.save(manager.task_dict) except KeyError: print(INVALID_ID_MSG) print_table(manager) print() print_completed_tasks(completed_tasks_dict)
def modify_task(args): manager = TaskManager(fileio.load()) task_id = args.id try: old_task: task.Task = manager.task_dict[task_id] new_name = args.name if args.name else old_task.name if args.date: new_date = interpret_date(args.date) elif args.floating or isinstance(old_task, task.FloatingTask): new_date = None else: new_date = old_task.due_date new_hours_remaining = args.est_hours if args.est_hours else old_task.hours_remaining manager.new_task(new_name, new_hours_remaining, new_date, task_id) fileio.save(manager.task_dict) print_table(manager, task_id) except KeyError: print(INVALID_ID_MSG) except ValueError as e: print(e)
def estimate(respfile, covfile, maskfile=None, cvfolds=None, testcov=None, testresp=None, saveoutput=True, outputsuffix=None): """ Estimate a normative model This will estimate a model in one of two settings according to the particular parameters specified (see below): * under k-fold cross-validation * estimating a training dataset then applying to a second test dataset The models are estimated on the basis of data stored on disk in ascii or neuroimaging data formats (nifti or cifti). Ascii data should be in tab or space delimited format with the number of subjects in rows and the number of variables in columns. Neuroimaging data will be reshaped into the appropriate format Basic usage:: estimate(respfile, covfile, [extra_arguments]) where the variables are defined below. Note that either the cfolds parameter or (testcov, testresp) should be specified, but not both. :param respfile: response variables for the normative model :param covfile: covariates used to predict the response variable :param maskfile: mask used to apply to the data (nifti only) :param cvfolds: Number of cross-validation folds :param testcov: Test covariates :param testresp: Test responses :param saveoutput: Save the output to disk? Otherwise returned as arrays :param outputsuffix: Text string to add to the output filenames All outputs are written to disk in the same format as the input. These are: :outputs: * yhat - predictive mean * ys2 - predictive variance * Z - deviance scores * Rho - Pearson correlation between true and predicted responses * pRho - parametric p-value for this correlation * rmse - root mean squared error between true/predicted responses * smse - standardised mean squared error The outputsuffix may be useful to estimate multiple normative models in the same directory (e.g. for custom cross-validation schemes) """ # load data print("Processing data in " + respfile) X = fileio.load(covfile) Y, maskvol = load_response_vars(respfile, maskfile) if len(Y.shape) == 1: Y = Y[:, np.newaxis] if len(X.shape) == 1: X = X[:, np.newaxis] Nmod = Y.shape[1] if testcov is not None: # we have a separate test dataset Xte = fileio.load(testcov) Yte, testmask = load_response_vars(testresp, maskfile) testids = range(X.shape[0], X.shape[0] + Xte.shape[0]) if len(Yte.shape) == 1: Yte = Yte[:, np.newaxis] if len(Xte.shape) == 1: Xte = Xte[:, np.newaxis] # treat as a single train-test split splits = CustomCV((range(0, X.shape[0]), ), (testids, )) Y = np.concatenate((Y, Yte), axis=0) X = np.concatenate((X, Xte), axis=0) # force the number of cross-validation folds to 1 if cvfolds is not None and cvfolds != 1: print("Ignoring cross-valdation specification (test data given)") cvfolds = 1 else: # we are running under cross-validation splits = KFold(n_splits=cvfolds) testids = range(0, X.shape[0]) # find and remove bad variables from the response variables # note: the covariates are assumed to have already been checked nz = np.where( np.bitwise_and(np.isfinite(Y).any(axis=0), np.var(Y, axis=0) != 0))[0] # starting hyperparameters. Could also do random restarts here covfunc = CovSum(X, ('CovLin', 'CovSqExpARD')) hyp0 = np.zeros(covfunc.get_n_params() + 1) # run cross-validation loop Yhat = np.zeros_like(Y) S2 = np.zeros_like(Y) Z = np.zeros_like(Y) nlZ = np.zeros((Nmod, cvfolds)) Hyp = np.zeros((Nmod, len(hyp0), cvfolds)) for idx in enumerate(splits.split(X)): fold = idx[0] tr = idx[1][0] te = idx[1][1] # standardize responses and covariates, ignoring invalid entries iy, jy = np.ix_(tr, nz) mY = np.mean(Y[iy, jy], axis=0) sY = np.std(Y[iy, jy], axis=0) Yz = np.zeros_like(Y) Yz[:, nz] = (Y[:, nz] - mY) / sY mX = np.mean(X[tr, :], axis=0) sX = np.std(X[tr, :], axis=0) Xz = (X - mX) / sX # estimate the models for all subjects for i in range(0, len(nz)): # range(0, Nmod): print("Estimating model ", i + 1, "of", len(nz)) gpr = GPR(hyp0, covfunc, Xz[tr, :], Yz[tr, nz[i]]) Hyp[nz[i], :, fold] = gpr.estimate(hyp0, covfunc, Xz[tr, :], Yz[tr, nz[i]]) yhat, s2 = gpr.predict(Hyp[nz[i], :, fold], Xz[tr, :], Yz[tr, nz[i]], Xz[te, :]) Yhat[te, nz[i]] = yhat * sY[i] + mY[i] S2[te, nz[i]] = np.diag(s2) * sY[i]**2 Z[te, nz[i]] = (Y[te, nz[i]] - Yhat[te, nz[i]]) / \ np.sqrt(S2[te, nz[i]]) nlZ[nz[i], fold] = gpr.nlZ # compute performance metrics MSE = np.mean((Y[testids, :] - Yhat[testids, :])**2, axis=0) RMSE = np.sqrt(MSE) # for the remaining variables, we need to ignore zero variances SMSE = np.zeros_like(MSE) Rho = np.zeros(Nmod) pRho = np.ones(Nmod) iy, jy = np.ix_(testids, nz) # ids for tested samples with nonzero values SMSE[nz] = MSE[nz] / np.var(Y[iy, jy], axis=0) Rho[nz], pRho[nz] = compute_pearsonr(Y[iy, jy], Yhat[iy, jy]) # Set writing options if saveoutput: print("Writing output ...") if fileio.file_type(respfile) == 'cifti' or \ fileio.file_type(respfile) == 'nifti': exfile = respfile else: exfile = None if outputsuffix is not None: ext = str(outputsuffix) + fileio.file_extension(respfile) else: ext = fileio.file_extension(respfile) # Write output fileio.save(Yhat[testids, :].T, 'yhat' + ext, example=exfile, mask=maskvol) fileio.save(S2[testids, :].T, 'ys2' + ext, example=exfile, mask=maskvol) fileio.save(Z[testids, :].T, 'Z' + ext, example=exfile, mask=maskvol) fileio.save(Rho, 'Rho' + ext, example=exfile, mask=maskvol) fileio.save(pRho, 'pRho' + ext, example=exfile, mask=maskvol) fileio.save(RMSE, 'rmse' + ext, example=exfile, mask=maskvol) fileio.save(SMSE, 'smse' + ext, example=exfile, mask=maskvol) if cvfolds is None: fileio.save(Hyp, 'Hyp' + ext, example=exfile, mask=maskvol) else: for idx in enumerate(splits.split(X)): fold = idx[0] fileio.save(Hyp[:, :, fold], 'Hyp_' + str(fold + 1) + ext, example=exfile, mask=maskvol) else: output = (Yhat, S2, Z, Rho, pRho, RMSE, SMSE) return output
config = parse_args(sys.argv[1:]) if config.help_req: Configuration.print_usage() sys.exit(0) if config.export_fmt is not None: if config.export_fmt == 'swf': lec = fileio.load(config.file_to_load) exporter.to_swf(lec, lec.adats, config.file_to_load[:-4] + '.swf') elif config.export_fmt == 'pdf': lec = fileio.load(config.file_to_load) exporter.to_pdf(lec, config.file_to_load[:-4] + '.swf') elif config.export_fmt in ['dcd', 'dcb', 'dcx', 'dar', 'dct']: lec = fileio.load(config.file_to_load) fileio.save(config.file_to_load[:-3] + config.export_fmt, lec, lec.adats) else: print 'Unknown flag "--exp-%s"' % config.export_fmt sys.exit(0) # Something was passed, so use that to if config.audio_module is not None: try: Audio = __import__(config.audio_module).Audio except AttributeError: config.audio_module = None print 'audio module "%s" not found' % config.audio_module if config.audio_module is None: for a in Configuration.VALID_AV_MODULES: try:
def doSave(self): fileio.save(self.__processedValues, unicode(QtGui.QFileDialog.getSaveFileName()))
def estimate(respfile, covfile, maskfile=None, cvfolds=None, testcov=None, testresp=None, alg='gpr', configparam=None, saveoutput=True, outputsuffix=None): """ Estimate a normative model This will estimate a model in one of two settings according to the particular parameters specified (see below): * under k-fold cross-validation required settings 1) respfile 2) covfile 3) cvfolds>2 * estimating a training dataset then applying to a second test dataset required sessting 1) respfile 2) covfile 3) testcov 4) testresp * estimating on a training dataset ouput of forward maps mean and se required sessting 1) respfile 2) covfile 3) testcov The models are estimated on the basis of data stored on disk in ascii or neuroimaging data formats (nifti or cifti). Ascii data should be in tab or space delimited format with the number of subjects in rows and the number of variables in columns. Neuroimaging data will be reshaped into the appropriate format Basic usage:: estimate(respfile, covfile, [extra_arguments]) where the variables are defined below. Note that either the cfolds parameter or (testcov, testresp) should be specified, but not both. :param respfile: response variables for the normative model :param covfile: covariates used to predict the response variable :param maskfile: mask used to apply to the data (nifti only) :param cvfolds: Number of cross-validation folds :param testcov: Test covariates :param testresp: Test responses :param alg: Algorithm for normative model :param configparam: Parameters controlling the estimation algorithm :param saveoutput: Save the output to disk? Otherwise returned as arrays :param outputsuffix: Text string to add to the output filenames All outputs are written to disk in the same format as the input. These are: :outputs: * yhat - predictive mean * ys2 - predictive variance * Hyp - hyperparameters * Z - deviance scores * Rho - Pearson correlation between true and predicted responses * pRho - parametric p-value for this correlation * rmse - root mean squared error between true/predicted responses * smse - standardised mean squared error The outputsuffix may be useful to estimate multiple normative models in the same directory (e.g. for custom cross-validation schemes) """ # load data print("Processing data in " + respfile) X = fileio.load(covfile) Y, maskvol = load_response_vars(respfile, maskfile) if len(Y.shape) == 1: Y = Y[:, np.newaxis] if len(X.shape) == 1: X = X[:, np.newaxis] Nmod = Y.shape[1] if testcov is not None: # we have a separate test dataset Xte = fileio.load(testcov) testids = range(X.shape[0], X.shape[0]+Xte.shape[0]) trainids = range(0, X.shape[0]) if len(Xte.shape) == 1: Xte = Xte[:, np.newaxis] if testresp is not None: Yte, testmask = load_response_vars(testresp, maskfile) if len(Yte.shape) == 1: Yte = Yte[:, np.newaxis] else: sub_te = Xte.shape[0] Yte = np.zeros([sub_te, Nmod]) # treat as a single train-test split splits = CustomCV((range(0, X.shape[0]),), (testids,)) Y = np.concatenate((Y, Yte), axis=0) X = np.concatenate((X, Xte), axis=0) # force the number of cross-validation folds to 1 if cvfolds is not None and cvfolds != 1: print("Ignoring cross-valdation specification (test data given)") cvfolds = 1 else: # we are running under cross-validation splits = KFold(n_splits=cvfolds) testids = range(0, X.shape[0]) # find and remove bad variables from the response variables # note: the covariates are assumed to have already been checked nz = np.where(np.bitwise_and(np.isfinite(Y).any(axis=0), np.var(Y, axis=0) != 0))[0] # Initialise normative model nm = norm_init(X, alg=alg, configparam=configparam) # run cross-validation loop Yhat = np.zeros_like(Y) S2 = np.zeros_like(Y) Hyp = np.zeros((Nmod, nm.n_params, cvfolds)) Z = np.zeros_like(Y) nlZ = np.zeros((Nmod, cvfolds)) for idx in enumerate(splits.split(X)): fold = idx[0] tr = idx[1][0] te = idx[1][1] # standardize responses and covariates, ignoring invalid entries iy, jy = np.ix_(tr, nz) mY = np.mean(Y[iy, jy], axis=0) sY = np.std(Y[iy, jy], axis=0) Yz = np.zeros_like(Y) Yz[:, nz] = (Y[:, nz] - mY) / sY mX = np.mean(X[tr, :], axis=0) sX = np.std(X[tr, :], axis=0) Xz = (X - mX) / sX # estimate the models for all subjects for i in range(0, len(nz)): # range(0, Nmod): print("Estimating model ", i+1, "of", len(nz)) try: nm = norm_init(Xz[tr, :], Yz[tr, nz[i]], alg=alg, configparam=configparam) Hyp[nz[i], :, fold] = nm.estimate(Xz[tr, :], Yz[tr, nz[i]]) # Work around to get stats for subject in th emodel and out. Instead of te for all : #yhat, s2 = nm.predict(Xz[tr, :], Yz[tr, nz[i]], Xz[te, :], Hyp[nz[i], :, fold]) yhat, s2 = nm.predict(Xz[tr, :], Yz[tr, nz[i]], Xz, Hyp[nz[i], :, fold]) #Yhat[te, nz[i]] = yhat * sY[i] + mY[i] Yhat[:, nz[i]] = yhat * sY[i] + mY[i] #S2[te, nz[i]] = s2 * sY[i]**2 S2[:, nz[i]] = s2 * sY[i] ** 2 nlZ[nz[i], fold] = nm.neg_log_lik if testcov is None: #Z[te, nz[i]] = (Y[te, nz[i]] - Yhat[te, nz[i]]) / np.sqrt(S2[te, nz[i]]) Z[:, nz[i]] = (Y[:, nz[i]] - Yhat[:, nz[i]]) / np.sqrt(S2[:, nz[i]]) else: if testresp is not None: #Z[te, nz[i]] = (Y[te, nz[i]] - Yhat[te, nz[i]]) / np.sqrt(S2[te, nz[i]]) Z[:, nz[i]] = (Y[:, nz[i]] - Yhat[:, nz[i]]) / np.sqrt(S2[:, nz[i]]) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print("Model ", i+1, "of", len(nz), "FAILED!..skipping and writing NaN to outputs") print("Exception:") print(e) print(exc_type, fname, exc_tb.tb_lineno) Hyp[nz[i], :, fold] = float('nan') Yhat[te, nz[i]] = float('nan') S2[te, nz[i]] = float('nan') nlZ[nz[i], fold] = float('nan') if testcov is None: Z[te, nz[i]] = float('nan') else: if testresp is not None: Z[te, nz[i]] = float('nan') # compute performance metrics if testcov is None: MSE = np.mean((Y[testids, :] - Yhat[testids, :])**2, axis=0) MSE_tr = np.mean((Y[0, X.shape[0], :] - Yhat[0, X.shape[0], :])**2, axis=0) RMSE = np.sqrt(MSE) # for the remaining variables, we need to ignore zero variances SMSE = np.zeros_like(MSE) Rho = np.zeros(Nmod) pRho = np.ones(Nmod) iy, jy = np.ix_(testids, nz) # ids for tested samples nonzero values SMSE[nz] = MSE[nz] / np.var(Y[iy, jy], axis=0) Rho[nz], pRho[nz] = compute_pearsonr(Y[iy, jy], Yhat[iy, jy]) else: if testresp is not None: MSE = np.mean((Y[testids, :] - Yhat[testids, :])**2, axis=0) MSE_tr = np.mean((Y[0:X.shape[0], :] - Yhat[0:X.shape[0], :]) ** 2, axis=0) RMSE = np.sqrt(MSE) RMSE_tr = np.sqrt(MSE_tr) # for the remaining variables, we need to ignore zero variances SMSE = np.zeros_like(MSE) SMSE_tr = np.zeros_like(RMSE_tr) Rho = np.zeros(Nmod) Rho_tr = np.zeros(Nmod) pRho = np.ones(Nmod) pRho_tr = np.ones(Nmod) iy, jy = np.ix_(testids, nz) # ids tested samples nonzero values iy_tr, jy_tr = np.ix_(range(0, X.shape[0]), nz) SMSE[nz] = MSE[nz] / np.var(Y[iy, jy], axis=0) SMSE_tr[nz] = MSE[nz] / np.var(Y[iy_tr, jy_tr], axis=0) Rho[nz], pRho[nz] = compute_pearsonr(Y[iy, jy], Yhat[iy, jy]) Rho_tr[nz], pRho_tr[nz] = compute_pearsonr(Y[iy_tr, jy_tr], Yhat[iy_tr, jy_tr]) # Set writing options if saveoutput: print("Writing output ...") if fileio.file_type(respfile) == 'cifti' or \ fileio.file_type(respfile) == 'nifti': exfile = respfile else: exfile = None if outputsuffix is not None: ext = str(outputsuffix) + fileio.file_extension(respfile) else: ext = fileio.file_extension(respfile) # Write output if testcov is None: fileio.save(Yhat[testids, :].T, 'yhat' + ext, example=exfile, mask=maskvol) fileio.save(S2[testids, :].T, 'ys2' + ext, example=exfile, mask=maskvol) fileio.save(Z[testids, :].T, 'Z' + ext, example=exfile, mask=maskvol) fileio.save(Rho, 'Rho' + ext, example=exfile, mask=maskvol) fileio.save(pRho, 'pRho' + ext, example=exfile, mask=maskvol) fileio.save(RMSE, 'rmse' + ext, example=exfile, mask=maskvol) fileio.save(SMSE, 'smse' + ext, example=exfile, mask=maskvol) if cvfolds is None: fileio.save(Hyp[:,:,0], 'Hyp' + ext, example=exfile, mask=maskvol) else: for idx in enumerate(splits.split(X)): fold = idx[0] fileio.save(Hyp[:, :, fold], 'Hyp_' + str(fold+1) + ext, example=exfile, mask=maskvol) else: if testresp is None: fileio.save(Yhat[testids, :].T, 'yhat' + ext, example=exfile, mask=maskvol) fileio.save(S2[testids, :].T, 'ys2' + ext, example=exfile, mask=maskvol) fileio.save(Hyp[:,:,0], 'Hyp' + ext, example=exfile, mask=maskvol) else: fileio.save(Yhat[testids, :].T, 'yhat' + ext, example=exfile, mask=maskvol) fileio.save(Yhat[trainids, :].T, 'yhat_controls' + ext, example=exfile, mask=maskvol) fileio.save(S2[testids, :].T, 'ys2' + ext, example=exfile, mask=maskvol) fileio.save(S2[trainids, :].T, 'ys2_controls' + ext, example=exfile, mask=maskvol) fileio.save(Z[testids, :].T, 'Z' + ext, example=exfile, mask=maskvol) fileio.save(Z[trainids, :].T, 'Z_controls' + ext, example=exfile, mask=maskvol) fileio.save(Rho, 'Rho' + ext, example=exfile, mask=maskvol) fileio.save(Rho_tr, 'Rho_controls' + ext, example=exfile, mask=maskvol) fileio.save(pRho, 'pRho' + ext, example=exfile, mask=maskvol) fileio.save(pRho_tr, 'pRho_controls' + ext, example=exfile, mask=maskvol) fileio.save(RMSE, 'rmse' + ext, example=exfile, mask=maskvol) fileio.save(RMSE_tr, 'rmse_controls' + ext, example=exfile, mask=maskvol) fileio.save(SMSE, 'smse' + ext, example=exfile, mask=maskvol) fileio.save(SMSE_tr, 'smse_controls' + ext, example=exfile, mask=maskvol) if cvfolds is None: fileio.save(Hyp[:,:,0], 'Hyp' + ext, example=exfile, mask=maskvol) else: for idx in enumerate(splits.split(X)): fold = idx[0] fileio.save(Hyp[:, :, fold], 'Hyp_'+ str(fold+1) + ext, example=exfile, mask=maskvol) else: if testcov is None: output = (Yhat, S2, Hyp, Z, Rho, pRho, RMSE, SMSE) else: if testresp is None: output = (Yhat, S2, Hyp) else: output = (Yhat, S2, Hyp, Z, Rho, pRho, RMSE, SMSE) return output
def processSundanceData(): files = findSubExt(getSundanceDir(), "data", ext=".p") data = OrderedDict() for ifile in files: htmldata = get(ifile) bsdata = getHTML(htmldata) years = [] for h2 in bsdata.findAll("h2"): span = h2.find("span") try: year = int(span.string) except: continue years.append(year) for j,ul in enumerate(bsdata.findAll("ul")): try: year = years[j] except: break data[year] = {} lis = ul.findAll("li") for li in lis: try: txt = li.text txt = re.sub("\xe2\x80\x93", " :: ", txt) txt = re.sub(u"(\u2018|\u2013)", " :: ", txt) except: print "Error with",li continue vals = txt.split(" :: ") if len(vals) > 2: vals[1] = "-".join(vals[1:]) vals = vals[:2] vals = [x.strip() for x in vals] if len(vals) != 2: raise ValueError(vals) cat = vals[0] movie = vals[1] if cat.find("Piper-Heidsieck") != -1: continue if cat.find("Alfred P. Sloan") != -1: cat = "Alfred P. Sloan Prize" if cat in ["World Cinema Dramatic Screenwriting Award", "Sundance Institute/Mahindra Global Filmmaking Awards", "World Cinema Documentary Editing Award", "Excellence in Cinematography Award: Documentary", "Excellence in Cinematography Award: Dramatic", "World Cinema Cinematography Award: Documentary", "World Cinema Cinematography Award: Dramatic", "World Cinema Directing Award: Dramatic", "World Cinema Directing Award: Documentary", "World Dramatic Special Jury Prizes for Breakout Performances", "Dramatic Special Jury Prize for Breakout Performance", "Excellence in Cinematography Award Dramatic", "xcellence in Cinematography Award Documentary", "Documentary Editing Award", "Waldo Salt Screenwriting Award: Dramatic", "World Cinema Screenwriting Award", "Directing Award Documentary", "Directing Award Dramatic"]: vals = movie.split(" for ") if len(vals) == 2: movie = vals[1] elif len(vals) == 1: movie = vals[0] else: print "Error in",cat,"===>",movie continue if cat in ["Special Jury Prize for Acting"]: movie = movie.replace("for her performance ", "") vals = movie.split(" in ") if len(vals) == 2: movie = vals[1] vals = movie.split(" for ") if len(vals) == 2: movie = vals[1] if movie.find("retitled") != -1: movie = movie.split("retitled ")[1] movie = movie[:-1] movie = movie.replace(" (tie)", "") if movie.find(" director of ") != -1: movie = movie.split(" director of ")[1] print years[j],'\t',cat,'\t\t',movie,'\t\t' try: data[year][str(cat)] = str(movie) except: data[year][str(cat)] = movie savename = setFile(getSundanceDir(), "winners.yaml") print "Saving",len(data),"yearly results to",savename save(savename, data)