def stage3(args): bash_command = ("java -Xms1G -Xmx2G -cp chinese-whispers/target/chinese-whispers.jar de.tudarmstadt.lt.wsi.WSI " + " -in " + neighbours + " -out " + clusters + " -N " + str(args.N) + " -n " + str(args.n) + " -clustering cw") print("\nSTAGE 3") print("\nStart clustering of word ego-networks with following parameters:") print(bash_command) process = subprocess.Popen(bash_command.split(), stdout=subprocess.PIPE) for line in process.stdout: sys.stdout.write(line.decode('utf-8')) print("\nStart filtering of clusters.") filter_clusters.run(clusters, clusters_minsize, clusters_filtered, str(args.min_size))
def stage3(args): bash_command = ("java -Xms1G -Xmx2G -cp chinese-whispers/target/chinese-whispers.jar de.tudarmstadt.lt.wsi.WSI " + " -in " + neighbours + " -out " + clusters + " -N " + unicode(args.N) + " -n " + unicode(args.n) + " -clustering cw") print "\nSTAGE 3" print "\nStart clustering of word ego-networks with following parameters:" print bash_command process = subprocess.Popen(bash_command.split(), stdout=subprocess.PIPE) for line in iter(process.stdout.readline, ''): sys.stdout.write(line) print "\nStart filtering of clusters." filter_clusters.run(clusters, clusters_minsize, clusters_filtered, unicode(args.min_size))
def main(): parser = argparse.ArgumentParser(description='Performs training of a word sense embeddings model from a raw text ' 'corpus using the SkipGram approach based on word2vec and graph ' 'clustering of ego networks of semantically related terms.') parser.add_argument('train_corpus', help="Path to a training corpus in text form (can be .gz).") parser.add_argument('-phrases', help="Path to a file with extra vocabulary words, e.g. multiword expressions," "which should be included into the vocabulary of the model. Each " "line of this text file should contain one word or phrase with no header.", default="") parser.add_argument('-cbow', help="Use the continuous bag of words model (default is 1, use 0 for the " "skip-gram model).", default=1, type=int) parser.add_argument('-size', help="Set size of word vectors (default is 300).", default=300, type=int) parser.add_argument('-window', help="Set max skip length between words (default is 5).", default=5, type=int) parser.add_argument('-threads', help="Use <int> threads (default {}).".format(cpu_count()), default=cpu_count(), type=int) parser.add_argument('-iter', help="Run <int> training iterations (default 5).", default=5, type=int) parser.add_argument('-min_count', help="This will discard words that appear less than <int> times" " (default is 10).", default=10, type=int) parser.add_argument('-N', help="Number of nodes in each ego-network (default is 200).", default=200, type=int) parser.add_argument('-n', help="Maximum number of edges a node can have in the network" " (default is 200).", default=200, type=int) parser.add_argument('-bigrams', help="Detect bigrams in the input corpus.", action="store_true") parser.add_argument('-min_size', help="Minimum size of the cluster (default is 5).", default=5, type=int) parser.add_argument('-make-pcz', help="Perform two extra steps to label the original sense inventory with" " hypernymy labels and disambiguate the list of related words." "The obtained resource is called proto-concepualization or PCZ.", action="store_true") args = parser.parse_args() corpus_name = basename(args.train_corpus) model_dir = "model/" ensure_dir(model_dir) vectors_fpath = join(model_dir, corpus_name + ".cbow{}-size{}-window{}-iter{}-mincount{}-bigrams{}.word_vectors".format( args.cbow, args.size, args.window, args.iter, args.min_count, args.bigrams)) vectors_short_fpath = join(model_dir, corpus_name + ".word_vectors") neighbours_fpath = join(model_dir, corpus_name + ".N{}.graph".format(args.N)) clusters_fpath = join(model_dir, corpus_name + ".n{}.clusters".format(args.n)) clusters_minsize_fpath = clusters_fpath + ".minsize" + str(args.min_size) # clusters that satisfy min_size clusters_removed_fpath = clusters_minsize_fpath + ".removed" # cluster that are smaller than min_size if exists(vectors_fpath): print("Using existing vectors:", vectors_fpath) elif exists(vectors_short_fpath): print("Using existing vectors:", vectors_short_fpath) vectors_fpath = vectors_short_fpath else: learn_word_embeddings(args.train_corpus, vectors_fpath, args.cbow, args.window, args.iter, args.size, args.threads, args.min_count, detect_bigrams=args.bigrams, phrases_fpath=args.phrases) if not exists(neighbours_fpath): compute_graph_of_related_words(vectors_fpath, neighbours_fpath, neighbors=args.N) else: print("Using existing neighbors:", neighbours_fpath) if not exists(clusters_fpath): word_sense_induction(neighbours_fpath, clusters_fpath, args.n, args.threads) else: print("Using existing clusters:", clusters_fpath) if not exists(clusters_minsize_fpath): filter_clusters.run(clusters_fpath, clusters_minsize_fpath, args.min_size) else: print("Using existing filtered clusters:", clusters_minsize_fpath) building_sense_embeddings(clusters_minsize_fpath, vectors_fpath) if (args.make_pcz): # add isas isas_fpath = "" # in: clusters_minsize_fpath clusters_with_isas_fpath = clusters_minsize_fpath + ".isas" # disambiguate the original sense clusters clusters_disambiguated_fpath = clusters_with_isas_fpath + ".disambiguated" pcz.disamgiguate_sense_clusters.run(clusters_with_isas_fpath, clusters_disambiguated_fpath) # make the closure clusters_closure_fpath = clusters_disambiguated_fpath + ".closure"
def main(): parser = argparse.ArgumentParser(description='Performs training of a word sense embeddings model from a raw text ' 'corpus using the SkipGram approach based on word2vec and graph ' 'clustering of ego networks of semantically related terms.') parser.add_argument('train_corpus', help="Path to a training corpus in text form (can be .gz).") parser.add_argument('-cbow', help="Use the continuous bag of words model (default is 1, use 0 for the " "skip-gram model).", default=1, type=int) parser.add_argument('-size', help="Set size of word vectors (default is 300).", default=300, type=int) parser.add_argument('-window', help="Set max skip length between words (default is 5).", default=5, type=int) parser.add_argument('-threads', help="Use <int> threads (default {}).".format(cpu_count()), default=cpu_count(), type=int) parser.add_argument('-iter', help="Run <int> training iterations (default 5).", default=5, type=int) parser.add_argument('-min_count', help="This will discard words that appear less than <int> times" " (default is 10).", default=10, type=int) #parser.add_argument('-only_letters', help="Use only words built from letters/dash/point for DT.", action="store_true") #parser.add_argument('-vocab_limit', help="Use only <int> most frequent words from word vector model" # " for DT. By default use all words (default is none).", default=None, type=int) parser.add_argument('-N', help="Number of nodes in each ego-network (default is 200).", default=200, type=int) parser.add_argument('-n', help="Maximum number of edges a node can have in the network" " (default is 200).", default=200, type=int) parser.add_argument('-min_size', help="Minimum size of the cluster (default is 5).", default=5, type=int) parser.add_argument('-make-pcz', help="Perform two extra steps to label the original sense inventory with" " hypernymy labels and disambiguate the list of related words." "The obtained resource is called proto-concepualization or PCZ.", action="store_true") args = parser.parse_args() vectors_fpath, neighbours_fpath, clusters_fpath, clusters_minsize_fpath, clusters_removed_fpath = get_paths( args.train_corpus, args.min_size) if not exists(vectors_fpath): print(vectors_fpath) learn_word_embeddings(args.train_corpus, vectors_fpath, args.cbow, args.window, args.iter, args.size, args.threads, args.min_count, detect_phrases=True) else: print("Using existing vectors:", vectors_fpath) if not exists(neighbours_fpath): compute_graph_of_related_words(vectors_fpath, neighbours_fpath) else: print("Using existing neighbors:", neighbours_fpath) if not exists(clusters_fpath): word_sense_induction(neighbours_fpath, clusters_fpath, args.n, args.threads) else: print("Using existing clusters:", clusters_fpath) if not exists(clusters_minsize_fpath): filter_clusters.run(clusters_fpath, clusters_minsize_fpath, args.min_size) else: print("Using existing filtered clusters:", clusters_minsize_fpath) building_sense_embeddings(clusters_minsize_fpath, vectors_fpath) if (args.make_pcz): # add isas isas_fpath = "" # in: clusters_minsize_fpath clusters_with_isas_fpath = clusters_minsize_fpath + ".isas" # disambiguate the original sense clusters clusters_disambiguated_fpath = clusters_with_isas_fpath + ".disambiguated" pcz.disamgiguate_sense_clusters.run(clusters_with_isas_fpath, clusters_disambiguated_fpath) # make the closure clusters_closure_fpath = clusters_disambiguated_fpath + ".closure"
def main(): parser = argparse.ArgumentParser( description= 'Performs training of a word sense embeddings model from a raw text ' 'corpus using the SkipGram approach based on word2vec and graph ' 'clustering of ego networks of semantically related terms.') parser.add_argument('-vectors', help="Existing embeddings to make sense vectors from") parser.add_argument('-threads', help="Use <int> threads (default {}).".format( cpu_count()), default=cpu_count(), type=int) parser.add_argument('-iter', help="Run <int> training iterations (default 5).", default=5, type=int) parser.add_argument( '-min_count', help="This will discard words that appear less than <int> times" " (default is 10).", default=10, type=int) parser.add_argument( '-N', help="Number of nodes in each ego-network (default is 200).", default=200, type=int) parser.add_argument( '-n', help="Maximum number of edges a node can have in the network" " (default is 200).", default=200, type=int) parser.add_argument('-min_size', help="Minimum size of the cluster (default is 5).", default=5, type=int) args = parser.parse_args() model_dir = "model/" ensure_dir(model_dir) vectors_fpath = args.vectors neighbours_fpath = join(model_dir, args.vectors + ".N{}.graph".format(args.N)) clusters_fpath = join(model_dir, args.vectors + ".n{}.clusters".format(args.n)) clusters_minsize_fpath = clusters_fpath + ".minsize" + str( args.min_size) # clusters that satisfy min_size clusters_removed_fpath = clusters_minsize_fpath + ".removed" # cluster that are smaller than min_size if exists(vectors_fpath): print("Using existing vectors:", vectors_fpath) else: return FileNotFoundError if not exists(neighbours_fpath): compute_graph_of_related_words(vectors_fpath, neighbours_fpath, neighbors=args.N) else: print("Using existing neighbors:", neighbours_fpath) word_sense_induction(neighbours_fpath, clusters_fpath, args.n, args.threads) filter_clusters.run(clusters_fpath, clusters_minsize_fpath, args.min_size) building_sense_embeddings(clusters_minsize_fpath, vectors_fpath)