Exemple #1
0
    def __init__(self,
                 init: Union[ObjectTarget3D, TrackingTarget3D],
                 Q: np.ndarray = np.eye(6)):
        '''
        :param init: Initial state for the target
        :param Q: System process noise
        '''
        sigma_points = kf.JulierSigmaPoints(6)
        self._filter = kf.UnscentedKalmanFilter(
            dim_x=6,
            dim_z=3,
            dt=None,
            fx=motion_CTRA,
            hx=lambda s: s[:3],
            points=sigma_points,
            x_mean_fn=self._state_mean,
            z_mean_fn=self._state_mean,
            residual_x=self._state_diff,
            residual_z=self._state_diff,
        )
        self._filter.Q = np.asarray(Q).reshape(6, 6)

        # feed initial state
        yaw, pitch, roll = init.orientation.as_euler("ZYX")
        self._filter.x = np.array(
            [init.position[0], init.position[1], yaw, 0, 0, 0])
        self._filter.P = np.copy(self._filter.Q)
        self._filter.P[:2, :2] = init.position_var[:2, :2]
        self._filter.P[2, 2] = init.orientation_var

        self._save_z = init.position[2]
        self._save_z_var = init.position_var[2, 2]
        self._save_pitch = pitch  # TODO: use simple bayesian filter for pitch and roll values
        self._save_roll = roll
        self.check_valid("initialize")
Exemple #2
0
    def __init__(self,
                 init: Union[ObjectTarget3D, TrackingTarget3D],
                 Q: np.ndarray = np.eye(4)):
        '''
        :param init: initial state for the target
        :param Q: system process noise
        '''
        # create filter
        sigma_points = kf.JulierSigmaPoints(6)
        self._filter = kf.UnscentedKalmanFilter(dim_x=4,
                                                dim_z=2,
                                                dt=None,
                                                fx=motion_CV,
                                                hx=lambda s: s[:2],
                                                points=sigma_points)
        self._filter.Q = np.asarray(Q).reshape(4, 4)

        # feed initial state
        self._filter.x = np.array([init.position[0], init.position[1], 0, 0])
        self._filter.P = np.copy(self._filter.Q)
        self._filter.P[:2, :2] = init.position_var[:2, :2]

        self._save_z = init.position[
            2]  # TODO: use simple bayesian filter for z values
        self._save_z_var = init.position_var[2, 2]
        self._save_ori = init.orientation  # TODO: use simple bayesian filter for orientation
        self._save_ori_var = init.orientation_var
Exemple #3
0
    def __init__(self, Q=None):
        self._filter = kf.UnscentedKalmanFilter(
            dim_x=4,
            dim_z=2,
            dt=None,
            fx=dm.motion_CV,
            hx=lambda s: s[:2],
            points=kf.MerweScaledSigmaPoints(4, alpha=.1, beta=.2, kappa=-1))

        if Q is None:
            self._filter.Q = np.diag([1., 1., 5., 5.])
        else:
            assert Q.shape == (4, 4)
            self._filter.Q = Q

        self._inited = False
    def __init__(self, model, x0, measurement_eqn=None, **kwargs):
        super().__init__(model, x0, measurement_eqn, **kwargs)

        self._input = None
        self.t = self.parameters['t0']

        if measurement_eqn is None:

            def measure(x):
                x = {key: value for (key, value) in zip(model.states, x)}
                z = model.output(x)
                return array(list(z.values()))
        else:

            def measure(x):
                x = {key: value for (key, value) in zip(model.states, x)}
                z = measurement_eqn(x)
                return array(list(z.values()))

        if 'Q' not in self.parameters:
            self.parameters['Q'] = diag([1.0e-1 for i in model.states])
        if 'R' not in self.parameters:
            self.parameters['R'] = diag(
                [1.0e-1 for i in range(len(measure(x0.values())))])

        def state_transition(x, dt):
            x = {key: value for (key, value) in zip(model.states, x)}
            x = model.next_state(x, self._input, dt)
            return array(list(x.values()))

        num_states = len(model.states)
        num_measurements = len(model.outputs)
        points = kalman.MerweScaledSigmaPoints(num_states,
                                               alpha=self.parameters['alpha'],
                                               beta=self.parameters['beta'],
                                               kappa=self.parameters['kappa'])
        self.filter = kalman.UnscentedKalmanFilter(num_states,
                                                   num_measurements,
                                                   self.parameters['dt'],
                                                   measure, state_transition,
                                                   points)
        self.filter.x = array(list(x0.values()))
        self.filter.Q = self.parameters['Q']
        self.filter.R = self.parameters['R']
Exemple #5
0
    def __init__(self, Q=None):
        self._filter = kf.UnscentedKalmanFilter(
            dim_x=6,
            dim_z=3,
            dt=None,
            fx=dm.motion_CTRA,
            hx=lambda s: s[:3],
            points=kf.MerweScaledSigmaPoints(6, alpha=.1, beta=.2, kappa=-1),
            x_mean_fn=self._state_mean,
            z_mean_fn=self._state_mean,
            residual_x=self._state_diff,
            residual_z=self._state_diff,
        )

        if Q is None:
            self._filter.Q = np.diag([1., 1., 1., 3., 10., 3.])
        else:
            assert Q.shape == (6, 6)
            self._filter.Q = Q

        self._inited = False
    xout[1] = x[1]
    return 

# measurement model dengan RNN
def hx(x):
    return x[:1] # return position [x]. Slicing semua kolom 1 menjadi row of array
'''
dim_x = trainX.ndim
dim_z = 1

points = kalman.MerweScaledSigmaPoints(
    Ldim, alpha=.3, beta=2., kappa=0
)  #makin besar alpha, makin menyebar data[:train_data], range(train_data)
kf = kalman.UnscentedKalmanFilter(dim_x=Xdim,
                                  dim_z=n_hx_output,
                                  dt=.1,
                                  hx=None,
                                  fx=None,
                                  points=points)  # sigma = points
kf.x = np.array(np.zeros(kf.x.shape))  # initial shape
kf.P = .2  # inisial uncertainty
kf.R = .5
z_std = 0.1


##WEIGHTS
def bobotUKF(data, X, k):
    lambda_ = points.alpha**2 * (points.n + points.kappa) - points.n
    Wc = np.full(2 * points.n + 1, 1. / (2 * (points.n + lambda_)))
    Wm = np.full(2 * points.n + 1, 1. / (2 * (points.n + lambda_)))
    Wc[0] = lambda_ / (points.n + lambda_) + (1. - points.alpha**2 +
                                              points.beta)
sigma_range = 0.3
sigma_bearing = 0.1
ellipse_step = 1
step = 10

print(landmarks)
print(ref_landmarks)
landmarks = ref_landmarks

points = kalman.MerweScaledSigmaPoints(n=3, alpha=.00001, beta=2, kappa=0, 
									subtract=residual_x)


ukf = kalman.UnscentedKalmanFilter(dim_x=3, dim_z=2*len(landmarks), 
								fx=move, hx=Hx,
								dt=dt, points=points, x_mean_fn=state_mean, 
								z_mean_fn=z_mean, residual_x=residual_x, 
								residual_z=residual_h)


ukf.x = np.array([2, 6, .3])
ukf.P = np.diag([.1, .1, .05])
ukf.R = np.diag([sigma_range**2, 
				 sigma_bearing**2]*len(landmarks))
ukf.Q = np.eye(3)*0.0001

sim_pos = ukf.x.copy()

plt.figure()
# plot landmarks
if len(landmarks) > 0: