def test_FinBondEmbeddedOptionMATLAB():

    # https://fr.mathworks.com/help/fininst/optembndbyhw.html
    # I FIND THAT THE PRICE CONVERGES TO 102.88 WHICH IS CLOSE TO 102.9127
    # FOUND BY MATLAB ALTHOUGH THEY DO NOT EXAMINE THE ASYMPTOTIC PRICE
    # WHICH MIGHT BE A BETTER MATCH

    settlementDate = FinDate(1, 1, 2007)
    valuationDate = settlementDate

    ###########################################################################

    dcType = FinDayCountTypes.THIRTY_E_360
    fixedFreq = FinFrequencyTypes.ANNUAL
    fixedLegType = FinSwapTypes.PAY
    swap1 = FinIborSwap(settlementDate, "1Y", fixedLegType, 0.0350, fixedFreq,
                        dcType)
    swap2 = FinIborSwap(settlementDate, "2Y", fixedLegType, 0.0400, fixedFreq,
                        dcType)
    swap3 = FinIborSwap(settlementDate, "3Y", fixedLegType, 0.0450, fixedFreq,
                        dcType)
    swaps = [swap1, swap2, swap3]
    discountCurve = FinIborSingleCurve(valuationDate, [], [], swaps)

    ###########################################################################

    issueDate = FinDate(1, 1, 2004)
    maturityDate = FinDate(1, 1, 2010)

    coupon = 0.0525
    freqType = FinFrequencyTypes.ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    callDates = []
    callPrices = []
    putDates = []
    putPrices = []

    putDate = FinDate(1, 1, 2008)
    for i in range(0, 24):
        putDates.append(putDate)
        putPrices.append(100)
        putDate = putDate.addMonths(1)

    testCases.header("BOND PRICE", "PRICE")
    v = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.print("Bond Pure Price:", v)

    sigma = 0.01  # basis point volatility
    a = 0.1

    puttableBond = FinBondEmbeddedOption(issueDate, maturityDate, coupon,
                                         freqType, accrualType, callDates,
                                         callPrices, putDates, putPrices)

    testCases.header("TIME", "NumTimeSteps", "BondWithOption", "BondPure")

    timeSteps = range(50, 1000, 10)
    values = []
    for numTimeSteps in timeSteps:
        model = FinModelRatesHW(sigma, a, numTimeSteps)
        start = time.time()
        v = puttableBond.value(settlementDate, discountCurve, model)
        end = time.time()
        period = end - start
        testCases.print(period, numTimeSteps, v['bondwithoption'],
                        v['bondpure'])
        values.append(v['bondwithoption'])

    if plotGraphs:
        plt.figure()
        plt.plot(timeSteps, values)
Exemple #2
0
def test_BDTExampleThree():
    # Valuation of a swaption as in Leif Andersen's paper - see Table 1 on
    # SSRN-id155208.pdf

    testCases.banner("===================== ANDERSEN PAPER ==============")

    # This is a sanity check
    testBlackModelCheck()

    settlementDate = FinDate(1, 1, 2020)
    times = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
    dates = settlementDate.addYears(times)
    rate = 0.06
    dfs = 1.0 / (1.0 + rate / 2.0)**(2.0 * times)
    curve = FinDiscountCurve(settlementDate, dates, dfs)

    coupon = 0.06
    freqType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    strikePrice = 100.0
    face = 100.0
    # Andersen paper
    numTimeSteps = 200

    testCases.header("ExerciseType", "Sigma", "NumSteps", "Texp", "Tmat",
                     "V_Fixed", "V_pay", "V_rec")

    for exerciseType in [FinExerciseTypes.EUROPEAN, FinExerciseTypes.BERMUDAN]:

        for maturityYears in [4.0, 5.0, 10.0, 20.0]:

            maturityDate = settlementDate.addYears(maturityYears)
            issueDate = FinDate(maturityDate._d, maturityDate._m, 2000)

            if maturityYears == 4.0 or maturityYears == 5.0:
                sigma = 0.2012
            elif maturityYears == 10.0:
                sigma = 0.1522
            elif maturityYears == 20.0:
                sigma = 0.1035

            for expiryYears in range(
                    int(maturityYears / 2) - 1, int(maturityYears)):

                expiryDate = settlementDate.addYears(expiryYears)

                tmat = (maturityDate - settlementDate) / gDaysInYear
                texp = (expiryDate - settlementDate) / gDaysInYear

                bond = FinBond(issueDate, maturityDate, coupon, freqType,
                               accrualType)

                couponTimes = []
                couponFlows = []
                cpn = bond._coupon / bond._frequency
                for flowDate in bond._flowDates:
                    if flowDate > expiryDate:
                        flowTime = (flowDate - settlementDate) / gDaysInYear
                        couponTimes.append(flowTime)
                        couponFlows.append(cpn)

                couponTimes = np.array(couponTimes)
                couponFlows = np.array(couponFlows)

                price = bond.cleanPriceFromDiscountCurve(settlementDate, curve)

                model = FinModelRatesBDT(sigma, numTimeSteps)
                model.buildTree(tmat, times, dfs)

                v = model.bermudanSwaption(texp, tmat, strikePrice, face,
                                           couponTimes, couponFlows,
                                           exerciseType)

                testCases.print("%s" % exerciseType, "%9.5f" % sigma,
                                "%9.5f" % numTimeSteps, "%9.5f" % expiryYears,
                                "%9.5f" % maturityYears, "%9.5f" % price,
                                "%9.2f" % (v['pay'] * 100.0),
                                "%9.2f" % (v['rec'] * 100.0))
def test_FinBondEmbeddedOptionQUANTLIB():

    # Based on example at the nice blog on Quantlib at
    # http://gouthamanbalaraman.com/blog/callable-bond-quantlib-python.html
    # I get a price of 68.97 for 1000 time steps which is higher than the
    # 68.38 found in blog article. But this is for 40 grid points.
    # Note also that a basis point vol of 0.120 is 12% which is VERY HIGH!

    valuationDate = FinDate(16, 8, 2016)
    settlementDate = valuationDate.addWeekDays(3)

    ###########################################################################

    discountCurve = FinDiscountCurveFlat(valuationDate, 0.035,
                                         FinFrequencyTypes.SEMI_ANNUAL)

    ###########################################################################

    issueDate = FinDate(15, 9, 2010)
    maturityDate = FinDate(15, 9, 2022)
    coupon = 0.025
    freqType = FinFrequencyTypes.QUARTERLY
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    ###########################################################################
    # Set up the call and put times and prices
    ###########################################################################

    nextCallDate = FinDate(15, 9, 2016)
    callDates = [nextCallDate]
    callPrices = [100.0]

    for i in range(1, 24):
        nextCallDate = nextCallDate.addMonths(3)
        callDates.append(nextCallDate)
        callPrices.append(100.0)

    putDates = []
    putPrices = []

    # the value used in blog of 12% bp vol is unrealistic
    sigma = 0.12  # basis point volatility
    a = 0.03

    puttableBond = FinBondEmbeddedOption(issueDate, maturityDate, coupon,
                                         freqType, accrualType, callDates,
                                         callPrices, putDates, putPrices)

    testCases.header("BOND PRICE", "PRICE")
    v = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.print("Bond Pure Price:", v)

    testCases.header("TIME", "NumTimeSteps", "BondWithOption", "BondPure")
    timeSteps = range(100, 1000, 100)
    values = []
    for numTimeSteps in timeSteps:
        model = FinModelRatesHW(sigma, a, numTimeSteps)
        start = time.time()
        v = puttableBond.value(settlementDate, discountCurve, model)
        end = time.time()
        period = end - start
        testCases.print(period, numTimeSteps, v['bondwithoption'],
                        v['bondpure'])
        values.append(v['bondwithoption'])

    if plotGraphs:
        plt.figure()
        plt.title("Puttable Bond Price Convergence")
        plt.plot(timeSteps, values)
Exemple #4
0
def test_BDTExampleTwo():
    # Valuation of a European option on a coupon bearing bond
    # This follows example in Fig 28.11 of John Hull's book (6th Edition)
    # but does not have the exact same dt so there are some differences

    testCases.banner("===================== FIG 28.11 HULL BOOK =============")

    settlementDate = FinDate(1, 12, 2019)
    issueDate = FinDate(1, 12, 2015)
    expiryDate = settlementDate.addTenor("18m")
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    freqType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    couponTimes = []
    couponFlows = []
    cpn = bond._coupon / bond._frequency
    numFlows = len(bond._flowDates)

    for i in range(1, numFlows):
        pcd = bond._flowDates[i - 1]
        ncd = bond._flowDates[i]
        if pcd < settlementDate and ncd > settlementDate:
            flowTime = (pcd - settlementDate) / gDaysInYear
            couponTimes.append(flowTime)
            couponFlows.append(cpn)

    for flowDate in bond._flowDates:
        if flowDate > settlementDate:
            flowTime = (flowDate - settlementDate) / gDaysInYear
            couponTimes.append(flowTime)
            couponFlows.append(cpn)

    couponTimes = np.array(couponTimes)
    couponFlows = np.array(couponFlows)

    strikePrice = 105.0
    face = 100.0

    tmat = (maturityDate - settlementDate) / gDaysInYear
    texp = (expiryDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 11)
    dates = settlementDate.addYears(times)
    dfs = np.exp(-0.05 * times)

    testCases.header("LABEL", "VALUES")
    testCases.print("TIMES:", times)

    curve = FinDiscountCurve(settlementDate, dates, dfs)

    price = bond.cleanPriceFromDiscountCurve(settlementDate, curve)
    testCases.print("Fixed Income Price:", price)

    sigma = 0.20

    # Test convergence
    numStepsList = [5]  #[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
    exerciseType = FinExerciseTypes.AMERICAN

    testCases.header("Values")
    treeVector = []
    for numTimeSteps in numStepsList:
        model = FinModelRatesBDT(sigma, numTimeSteps)
        model.buildTree(tmat, times, dfs)
        v = model.bondOption(texp, strikePrice, face, couponTimes, couponFlows,
                             exerciseType)

        testCases.print(v)
        treeVector.append(v['call'])

    if PLOT_GRAPHS:
        plt.plot(numStepsList, treeVector)

    # The value in Hull converges to 0.699 with 100 time steps while I get 0.70

    if 1 == 0:
        print("RT")
        printTree(model._rt, 5)
        print("Q")
        printTree(model._Q, 5)
Exemple #5
0
def test_FinBondOptionZEROVOLConvergence():

    # Build discount curve
    settlementDate = FinDate(1, 12, 2019)  # CHANGED
    rate = 0.05
    discountCurve = FinDiscountCurveFlat(settlementDate, rate,
                                         FinFrequencyTypes.ANNUAL)

    # Bond details
    issueDate = FinDate(1, 9, 2015)
    maturityDate = FinDate(1, 9, 2025)
    coupon = 0.06
    freqType = FinFrequencyTypes.ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    # Option Details
    expiryDate = settlementDate.addTenor("18m")  # FinDate(1, 12, 2021)
    #    print("EXPIRY:", expiryDate)
    face = 100.0

    dfExpiry = discountCurve.df(expiryDate)
    spotCleanValue = bond.cleanPriceFromDiscountCurve(settlementDate,
                                                      discountCurve)
    fwdCleanValue = bond.cleanPriceFromDiscountCurve(expiryDate, discountCurve)
    #    print("BOND SpotCleanBondPx", spotCleanValue)
    #    print("BOND FwdCleanBondPx", fwdCleanValue)
    #    print("BOND Accrued:", bond._accruedInterest)

    spotCleanValue = bond.cleanPriceFromDiscountCurve(settlementDate,
                                                      discountCurve)

    testCases.header("STRIKE", "STEPS", "CALL_INT", "CALL_INT_PV", "CALL_EUR",
                     "CALL_AMER", "PUT_INT", "PUT_INT_PV", "PUT_EUR",
                     "PUT_AMER")

    numTimeSteps = range(100, 1000, 200)
    strikePrices = [90, 100, 110, 120]

    for strikePrice in strikePrices:

        callIntrinsic = max(spotCleanValue - strikePrice, 0)
        putIntrinsic = max(strikePrice - spotCleanValue, 0)
        callIntrinsicPV = max(fwdCleanValue - strikePrice, 0) * dfExpiry
        putIntrinsicPV = max(strikePrice - fwdCleanValue, 0) * dfExpiry

        for numSteps in numTimeSteps:

            sigma = 0.0000001
            model = FinModelRatesBDT(sigma, numSteps)

            optionType = FinOptionTypes.EUROPEAN_CALL
            bondOption1 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v1 = bondOption1.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.AMERICAN_CALL
            bondOption2 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v2 = bondOption2.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.EUROPEAN_PUT
            bondOption3 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v3 = bondOption3.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.AMERICAN_PUT
            bondOption4 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v4 = bondOption4.value(settlementDate, discountCurve, model)

            testCases.print(strikePrice, numSteps, callIntrinsic,
                            callIntrinsicPV, v1, v2, putIntrinsic,
                            putIntrinsicPV, v3, v4)
def test_FinBondOption():

    settlementDate = FinDate(1, 12, 2019)
    issueDate = FinDate(1, 12, 2018)
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    freqType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    times = np.linspace(0, 10.0, 21)
    dfs = np.exp(-0.05 * times)
    dates = settlementDate.addYears(times)
    discountCurve = FinDiscountCurve(settlementDate, dates, dfs)

    expiryDate = settlementDate.addTenor("18m")
    strikePrice = 105.0
    face = 100.0

    ###########################################################################

    strikes = [80, 85, 90, 95, 100, 105, 110, 115, 120]

    optionType = FinOptionTypes.EUROPEAN_CALL

    testCases.header("LABEL", "VALUE")

    price = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.print("Fixed Income Price:", price)

    numTimeSteps = 100

    testCases.banner("HW EUROPEAN CALL")
    testCases.header("STRIKE", "VALUE")

    for strikePrice in strikes:

        sigma = 0.01
        a = 0.1

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)

        model = FinModelRatesHW(sigma, a, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print(strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.AMERICAN_CALL

    price = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.header("LABEL", "VALUE")
    testCases.print("Fixed Income Price:", price)

    testCases.banner("HW AMERICAN CALL")
    testCases.header("STRIKE", "VALUE")

    for strikePrice in strikes:

        sigma = 0.01
        a = 0.1

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)

        model = FinModelRatesHW(sigma, a)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print(strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.EUROPEAN_PUT
    testCases.banner("HW EUROPEAN PUT")
    testCases.header("STRIKE", "VALUE")

    price = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)

    for strikePrice in strikes:

        sigma = 0.01
        a = 0.1

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)

        model = FinModelRatesHW(sigma, a)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print(strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.AMERICAN_PUT
    testCases.banner("HW AMERICAN PUT")
    testCases.header("STRIKE", "VALUE")

    price = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)

    for strikePrice in strikes:

        sigma = 0.02
        a = 0.1

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)

        model = FinModelRatesHW(sigma, a)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print(strikePrice, v)
def test_FinBondOptionAmericanConvergenceTWO():

    # Build discount curve
    settlementDate = FinDate(1, 12, 2019)
    discountCurve = FinDiscountCurveFlat(settlementDate, 0.05)

    # Bond details
    issueDate = FinDate(1, 12, 2015)
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    freqType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)
    expiryDate = settlementDate.addTenor("18m")
    face = 100.0

    spotValue = bond.cleanPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.header("LABEL", "VALUE")
    testCases.print("BOND PRICE", spotValue)

    testCases.header("TIME", "N", "EUR_CALL", "AMER_CALL", "EUR_PUT",
                     "AMER_PUT")

    sigma = 0.01
    a = 0.1
    hwModel = FinModelRatesHW(sigma, a)
    K = 102.0

    vec_ec = []
    vec_ac = []
    vec_ep = []
    vec_ap = []

    numStepsVector = range(100, 500, 100)

    for numSteps in numStepsVector:
        hwModel = FinModelRatesHW(sigma, a, numSteps)

        start = time.time()

        europeanCallBondOption = FinBondOption(bond, expiryDate, K, face,
                                               FinOptionTypes.EUROPEAN_CALL)

        v_ec = europeanCallBondOption.value(settlementDate, discountCurve,
                                            hwModel)

        americanCallBondOption = FinBondOption(bond, expiryDate, K, face,
                                               FinOptionTypes.AMERICAN_CALL)

        v_ac = americanCallBondOption.value(settlementDate, discountCurve,
                                            hwModel)

        europeanPutBondOption = FinBondOption(bond, expiryDate, K, face,
                                              FinOptionTypes.EUROPEAN_PUT)

        v_ep = europeanPutBondOption.value(settlementDate, discountCurve,
                                           hwModel)

        americanPutBondOption = FinBondOption(bond, expiryDate, K, face,
                                              FinOptionTypes.AMERICAN_PUT)

        v_ap = americanPutBondOption.value(settlementDate, discountCurve,
                                           hwModel)

        end = time.time()
        period = end - start

        testCases.print(period, numSteps, v_ec, v_ac, v_ep, v_ap)

        vec_ec.append(v_ec)
        vec_ac.append(v_ac)
        vec_ep.append(v_ep)
        vec_ap.append(v_ap)

    if plotGraphs:
        plt.figure()
        plt.plot(numStepsVector, vec_ac, label="American Call")
        plt.legend()

        plt.figure()
        plt.plot(numStepsVector, vec_ap, label="American Put")
        plt.legend()
def test_HullWhiteCallableBond():
    # Valuation of a European option on a coupon bearing bond

    settlementDate = FinDate(1, 12, 2019)
    issueDate = FinDate(1, 12, 2018)
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    frequencyType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, frequencyType, accrualType)

    couponTimes = []
    couponFlows = []
    cpn = bond._coupon / bond._frequency

    for flowDate in bond._flowDates[1:]:

        if flowDate > settlementDate:
            flowTime = (flowDate - settlementDate) / gDaysInYear
            couponTimes.append(flowTime)
            couponFlows.append(cpn)

    couponTimes = np.array(couponTimes)
    couponFlows = np.array(couponFlows)

    ###########################################################################
    # Set up the call and put times and prices
    ###########################################################################

    callDates = []
    callPrices = []
    callPx = 120.0
    callDates.append(settlementDate.addTenor("2Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("3Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("4Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("5Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("6Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("7Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("8Y"))
    callPrices.append(callPx)

    callTimes = []
    for dt in callDates:
        t = (dt - settlementDate) / gDaysInYear
        callTimes.append(t)

    putDates = []
    putPrices = []
    putPx = 98.0
    putDates.append(settlementDate.addTenor("2Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("3Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("4Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("5Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("6Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("7Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("8Y"))
    putPrices.append(putPx)

    putTimes = []
    for dt in putDates:
        t = (dt - settlementDate) / gDaysInYear
        putTimes.append(t)

    ###########################################################################

    tmat = (maturityDate - settlementDate) / gDaysInYear
    curve = FinDiscountCurveFlat(settlementDate, 0.05,
                                 FinFrequencyTypes.CONTINUOUS)

    dfs = []
    times = []

    for dt in bond._flowDates:
        if dt > settlementDate:
            t = (dt - settlementDate) / gDaysInYear
            df = curve.df(dt)
            times.append(t)
            dfs.append(df)

    dfs = np.array(dfs)
    times = np.array(times)

    ###########################################################################

    v1 = bond.cleanPriceFromDiscountCurve(settlementDate, curve)

    sigma = 0.02  # basis point volatility
    a = 0.01

    # Test convergence
    numStepsList = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
    tmat = (maturityDate - settlementDate) / gDaysInYear

    testCases.header("NUMSTEPS", "BOND_ONLY", "CALLABLE_BOND", "TIME")

    for numTimeSteps in numStepsList:

        start = time.time()
        model = FinModelRatesHW(sigma, a, numTimeSteps)
        model.buildTree(tmat, times, dfs)

        v2 = model.callablePuttableBond_Tree(couponTimes, couponFlows,
                                             callTimes, callPrices, putTimes,
                                             putPrices, 100.0)

        end = time.time()
        period = end - start
        testCases.print(numTimeSteps, v1, v2, period)