def test_topk_insert(k): raw_m = get_data("finn.data", "onnx/mnist-conv/model.onnx") model = ModelWrapper(raw_m) model.model.opset_import[0].version = 11 # do transformations (no topk) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) # verification: generate random input, run through net, streamline, # run again, check that output is top-k raw_i = get_data("finn.data", "onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) input_tensor = nph.to_array(input_tensor) input_dict = {"global_in": input_tensor} output_golden = oxe.execute_onnx(model, input_dict)["global_out"] output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] output_golden_topk = output_golden_topk.flatten() # insert top-k model = model.transform(InsertTopK(k)) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferShapes()) # verify output of top-k output_dict_topk = oxe.execute_onnx(model, input_dict) output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] output_pysim_topk = output_pysim_topk.astype(np.int).flatten() assert np.array_equal(output_golden_topk, output_pysim_topk)
def test_topk_insert(k): tfc = get_test_model_trained("TFC", 1, 1) bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) model = ModelWrapper(export_onnx_path) # do transformations (no topk) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) # verification: generate random input, run through net, streamline, # run again, check that output is top-k raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float() output_golden = tfc.forward(input_brevitas).detach().numpy() output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] output_golden_topk = output_golden_topk.flatten() input_dict = {"global_in": nph.to_array(input_tensor)} # insert top-k model = model.transform(InsertTopK(k)) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferShapes()) # verify output of top-k output_dict_topk = oxe.execute_onnx(model, input_dict) output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] output_pysim_topk = output_pysim_topk.astype(np.int).flatten() assert np.array_equal(output_golden_topk, output_pysim_topk)
def test_add_pre_and_postproc(self, topology, wbits, abits): prev_chkpt_name = get_checkpoint_name(topology, wbits, abits, "import_and_tidy") model = load_test_checkpoint_or_skip(prev_chkpt_name) global_inp_name = model.graph.input[0].name ishape = model.get_tensor_shape(global_inp_name) # preprocessing: torchvision's ToTensor divides uint8 inputs by 255 totensor_pyt = ToTensor() chkpt_preproc_name = get_checkpoint_name(topology, wbits, abits, "preproc") bo.export_finn_onnx(totensor_pyt, ishape, chkpt_preproc_name) assert os.path.isfile(chkpt_preproc_name) # join preprocessing and core model pre_model = ModelWrapper(chkpt_preproc_name) model = model.transform(MergeONNXModels(pre_model)) # add input quantization annotation: UINT8 for all BNN-PYNQ models global_inp_name = model.graph.input[0].name model.set_tensor_datatype(global_inp_name, DataType.UINT8) # postprocessing: insert Top-1 node at the end model = model.transform(InsertTopK(k=1)) chkpt_name = get_checkpoint_name(topology, wbits, abits, "pre_post") # tidy-up again model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) model = model.transform(RemoveStaticGraphInputs()) model.save(chkpt_name) assert os.path.isfile(chkpt_name)
def post_processing(model): log("Starting Post Processing") # Insert Top-1 node at the end model = model.transform(InsertTopK(k=1)) # Tidy-up again model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) model = model.transform(RemoveStaticGraphInputs()) log("Finished Post Processing!") save(model, "2_with_pre_post") return model
def step_resnet50_tidy(model: ModelWrapper, cfg: DataflowBuildConfig): model = model.transform(GiveUniqueParameterTensors()) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(RemoveStaticGraphInputs()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) model = model.transform(InsertTopK()) model = model.transform(InferShapes()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) return model
def test_move_flatten_past_affine(data_layout, batch_size): if data_layout == DataLayout.NHWC: ishape = [batch_size, 1, 1, 1024] oshape = [batch_size, 1024] else: ishape = [batch_size, 1024, 1, 1] oshape = [batch_size, 1024] inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape) flatten_node = helper.make_node("Flatten", ["inp"], ["outp"]) graph = helper.make_graph( nodes=[flatten_node], name="move-flatten-graph", inputs=[inp], outputs=[outp], ) model = helper.make_model(graph, producer_name="move_flatten_model") model = ModelWrapper(model) model.set_tensor_datatype("inp", DataType.INT2) model.set_tensor_layout("inp", data_layout) model = model.transform(InsertTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) # compare execution before and after transformation inp_values = gen_finn_dt_tensor(DataType.INT2, ishape) idict = {model.graph.input[0].name: inp_values} model_transformed = model.transform(MoveFlattenPastTopK()) assert oxe.compare_execution(model, model_transformed, idict) # depending on data layout check if graph is transformed or not if data_layout == DataLayout.NHWC: # check if nodes have new order in transformed graph assert model.graph != model_transformed.graph assert model_transformed.graph.node[-1].op_type == "Flatten" else: assert model.graph == model_transformed.graph
def test_end2end_mobilenet_tidy_and_merge_with_preproc(): preproc_model = load_test_checkpoint_or_skip( build_dir + "/end2end_mobilenet_preproc.onnx") model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_export.onnx") model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(InsertTopK()) # get initializer from Mul that will be absorbed into topk a0 = model.get_initializer(model.graph.node[-2].input[1]) np.save(build_dir + "/end2end_mobilenet_topk_scale.npy", a0) model = model.transform(absorb.AbsorbScalarMulAddIntoTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveUniqueParameterTensors()) model = model.transform(GiveReadableTensorNames()) model = model.transform(MergeONNXModels(preproc_model)) model.save(build_dir + "/end2end_mobilenet_tidy.onnx")
def test_absorb_mul_into_topk(mul_positive, scalar): if scalar is True: shape = [1] else: shape = [1, 1, 1, 1000] inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 1, 1, 1000]) a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, shape) b0 = helper.make_tensor_value_info("b0", TensorProto.FLOAT, [1, 1, 1, 1000]) c0 = helper.make_tensor_value_info("c0", TensorProto.FLOAT, shape) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 1, 1, 1000]) mul_node = helper.make_node("Mul", ["inp", "a0"], ["b0"]) add_node = helper.make_node("Add", ["b0", "c0"], ["outp"]) mul_graph = helper.make_graph( nodes=[mul_node, add_node], name="mul-graph", inputs=[inp], outputs=[outp], value_info=[a0, b0, c0], ) model = helper.make_model(mul_graph, producer_name="mul_model") model = ModelWrapper(model) # initialize values # for mul if mul_positive is True: a0_values = np.random.uniform(low=0.1, high=1, size=tuple(shape)).astype(np.float32) else: a0_values = np.random.uniform(low=-1, high=-0.1, size=tuple(shape)).astype(np.float32) model.set_initializer("a0", a0_values) # for add c0_values = np.random.uniform(low=-1, high=-0.1, size=tuple(shape)).astype(np.float32) model.set_initializer("c0", c0_values) model = model.transform(InsertTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model_transformed = model.transform(AbsorbScalarMulAddIntoTopK()) # compare execution results inp_values = np.random.uniform(low=-10, high=10, size=(1, 1, 1, 1000)).astype(np.float32) idict = {"global_in": inp_values} odict = oxe.execute_onnx(model, idict, True) y_indices = odict["global_out"] y_values = odict["TopK_0_out0"] odict = oxe.execute_onnx(model_transformed, idict, True) y_tr_indices = odict["global_out"] y_tr_values = odict["TopK_0_out0"] # the indices stay the same, if the model is transformed or not assert (y_indices == y_tr_indices).all() if scalar is True and mul_positive is True: # the values change if the model was transformed assert (y_values != y_tr_values).all() # check for new order assert model.graph != model_transformed.graph assert len(model.graph.node) - 2 == len(model_transformed.graph.node) assert model_transformed.graph.node[0].op_type == "TopK"
def test_brevitas_compare_exported_mobilenet(): if "IMAGENET_VAL_PATH" not in os.environ.keys(): pytest.skip("Can't do validation without IMAGENET_VAL_PATH") n_images = 10 debug_mode = False export_onnx_path = make_build_dir("test_brevitas_mobilenet-v1_") # export preprocessing preproc_onnx = export_onnx_path + "/quant_mobilenet_v1_4b_preproc.onnx" preproc = NormalizePreProc(mean, std, ch) bo.export_finn_onnx(preproc, (1, 3, 224, 224), preproc_onnx) preproc_model = ModelWrapper(preproc_onnx) preproc_model = preproc_model.transform(InferShapes()) preproc_model = preproc_model.transform(GiveUniqueNodeNames()) preproc_model = preproc_model.transform(GiveUniqueParameterTensors()) preproc_model = preproc_model.transform(GiveReadableTensorNames()) # export the actual MobileNet-v1 finn_onnx = export_onnx_path + "/quant_mobilenet_v1_4b.onnx" mobilenet = get_test_model_trained("mobilenet", 4, 4) if debug_mode: dbg_hook = bo.enable_debug(mobilenet) bo.export_finn_onnx(mobilenet, (1, 3, 224, 224), finn_onnx) model = ModelWrapper(finn_onnx) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(RemoveStaticGraphInputs()) model = model.transform(InsertTopK()) # get initializer from Mul that will be absorbed into topk a0 = model.get_initializer(model.get_nodes_by_op_type("Mul")[-1].input[1]) model = model.transform(absorb.AbsorbScalarMulAddIntoTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveUniqueParameterTensors()) model = model.transform(GiveReadableTensorNames()) model.save(export_onnx_path + "/quant_mobilenet_v1_4b_wo_preproc.onnx") # create merged preprocessing + MobileNet-v1 model model = model.transform(MergeONNXModels(preproc_model)) model.save(export_onnx_path + "/quant_mobilenet_v1_4b.onnx") with open( export_onnx_path + "/mobilenet_validation.csv", "w", newline="" ) as csvfile: writer = csv.writer(csvfile) writer.writerow( [ "goldenID", "brevitasTop5", "brevitasTop5[%]", "finnTop5", "finnTop5[%]", "top5equal", "top5%equal", ] ) csvfile.flush() workload = imagenet_util.get_val_images(n_images, interleave_classes=True) all_inds_ok = True all_probs_ok = True for (img_path, target_id) in workload: img_np = imagenet_util.load_resize_crop(img_path) img_torch = torch.from_numpy(img_np).float() # do forward pass in PyTorch/Brevitas input_tensor = preproc.forward(img_torch) expected = mobilenet.forward(input_tensor).detach().numpy() expected_topk = expected.flatten() expected_top5 = np.argsort(expected_topk)[-5:] expected_top5 = np.flip(expected_top5) expected_top5_prob = [] for index in expected_top5: expected_top5_prob.append(expected_topk[index]) idict = {model.graph.input[0].name: img_np} odict = oxe.execute_onnx(model, idict, return_full_exec_context=True) produced = odict[model.graph.output[0].name] produced_prob = odict["TopK_0_out0"] * a0 inds_ok = (produced.flatten() == expected_top5).all() probs_ok = np.isclose(produced_prob.flatten(), expected_top5_prob).all() all_inds_ok = all_inds_ok and inds_ok all_probs_ok = all_probs_ok and probs_ok writer.writerow( [ str(target_id), str(expected_top5), str(expected_top5_prob), str(produced.flatten()), str(produced_prob.flatten()), str(inds_ok), str(probs_ok), ] ) csvfile.flush() if ((not inds_ok) or (not probs_ok)) and debug_mode: print("Results differ for %s" % img_path) # check all tensors at debug markers names_brevitas = set(dbg_hook.values.keys()) names_finn = set(odict.keys()) names_common = names_brevitas.intersection(names_finn) for dbg_name in names_common: if not np.isclose( dbg_hook.values[dbg_name].detach().numpy(), odict[dbg_name], atol=1e-3, ).all(): print("Tensor %s differs between Brevitas and FINN" % dbg_name) assert all_inds_ok and all_probs_ok
def test_convert_to_hls_layers_synthetic(ch, ifmdim, idt): model = make_model(ch, ifmdim) model.save(export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataLayouts()) # model.save("golden.onnx") # generate test vectors of correct shape if ifmdim == -1: input_tensor_shape = (1, ch) else: input_tensor_shape = (1, ch, ifmdim, ifmdim) x = gen_finn_dt_tensor(idt, input_tensor_shape) # generate expected value from streamlined net input_dict = {model.graph.input[0].name: x} output_dict = oxe.execute_onnx(model, input_dict, True) produced_sum = output_dict[model.graph.output[0].name] chw_mul = model.get_initializer(model.graph.node[-1].input[1]) chw_mul = 1 expected_sum = chw_mul * np.sum(2 * (2 * x + 15.0), axis=(2, 3)) / (ifmdim * ifmdim) assert (produced_sum.flatten() == expected_sum.flatten()).all() model = model.transform(InferDataLayouts()) # convert to hls model.set_tensor_datatype(model.graph.input[0].name, idt) # extra streamlining model = model.transform(MoveScalarLinearPastInvariants()) model = model.transform(MoveAddPastMul()) model = model.transform(CollapseRepeatedMul()) model = model.transform(CollapseRepeatedAdd()) # insert top-k node, which should absorb linear ops before it model = model.transform(InferShapes()) model = model.transform(InferDataLayouts()) model = model.transform(InferDataTypes()) model = model.transform(to_hls.InferChannelwiseLinearLayer()) model = model.transform(to_hls.InferAddStreamsLayer()) model = model.transform(to_hls.InferGlobalAccPoolLayer()) model = model.transform(MoveScalarLinearPastInvariants()) model = model.transform(InsertTopK()) model = model.transform(AbsorbScalarMulAddIntoTopK()) model = model.transform(InferDataTypes()) model = model.transform(to_hls.InferLabelSelectLayer()) model = model.transform(AbsorbConsecutiveTransposes()) model = model.transform(InferDataTypes()) model = model.transform(to_hls.InferLabelSelectLayer()) model = model.transform(to_hls.InferDuplicateStreamsLayer()) model = model.transform(SortGraph()) # model.save("golden_hls.onnx") # check topology status finn_nodes = model.get_finn_nodes() assert len(finn_nodes) == 9 add_nodes = model.get_nodes_by_op_type("AddStreams_Batch") assert len(add_nodes) == 1 pool_nodes = model.get_nodes_by_op_type("GlobalAccPool_Batch") assert len(pool_nodes) == 1 label_nodes = model.get_nodes_by_op_type("LabelSelect_Batch") assert len(label_nodes) == 1 channelwise_nodes = model.get_nodes_by_op_type("ChannelwiseOp_Batch") assert len(channelwise_nodes) == 5 dup_nodes = model.get_nodes_by_op_type("DuplicateStreams_Batch") assert len(dup_nodes) == 1 model = model.transform(PrepareCppSim()) model = model.transform(CompileCppSim()) model = model.transform(SetExecMode("cppsim")) output_dict = oxe.execute_onnx(model, input_dict, True) produced_topk_hls = output_dict[model.graph.output[0].name] topk_input = output_dict[model.graph.node[-1].input[0]] assert soft_verify_topk(topk_input, produced_topk_hls, 5) os.remove(export_onnx_path)
def step_preprocess(model: ModelWrapper, cfg: DataflowBuildConfig): model = model.transform(InsertTopK(k=1)) return model
def test_brevitas_mobilenet(): # get single image as input and prepare image img = Image.open("/workspace/finn/tests/brevitas/king_charles.jpg") # resize smallest side of the image to 256 pixels and resize larger side # with same ratio img = resize_smaller_side(256, img) # crop central 224*224 window img = crop_center(224, img) # save image as numpy array and as torch tensor to enable testing in # brevitas/pytorch and finn and transpose from (H, W, C) to (C, H, W) img_np = np.asarray(img).copy().astype(np.float32).transpose(2, 0, 1) img_np = img_np.reshape(1, 3, 224, 224) img_torch = torch.from_numpy(img_np).float() # export preprocess export_onnx_path = make_build_dir("test_brevitas_mobilenet-v1_") preproc_onnx = export_onnx_path + "/quant_mobilenet_v1_4b_preproc.onnx" mean = [0.485, 0.456, 0.406] std = 0.226 ch = 3 preproc = NormalizePreProc(mean, std, ch) bo.export_finn_onnx(preproc, (1, 3, 224, 224), preproc_onnx) preproc_model = ModelWrapper(preproc_onnx) # set input finn datatype to UINT8 preproc_model.set_tensor_datatype(preproc_model.graph.input[0].name, DataType.UINT8) preproc_model = preproc_model.transform(InferShapes()) preproc_model = preproc_model.transform(GiveUniqueNodeNames()) preproc_model = preproc_model.transform(GiveUniqueParameterTensors()) preproc_model = preproc_model.transform(GiveReadableTensorNames()) finn_onnx = export_onnx_path + "/quant_mobilenet_v1_4b_exported.onnx" mobilenet = get_test_model_trained("mobilenet", 4, 4) bo.export_finn_onnx(mobilenet, (1, 3, 224, 224), finn_onnx) # do forward pass in PyTorch/Brevitas input_tensor = preproc.forward(img_torch) expected = mobilenet.forward(input_tensor).detach().numpy() expected_topk = expected.flatten() expected_top5 = np.argsort(expected_topk)[-5:] expected_top5 = np.flip(expected_top5) expected_top5_prob = [] for index in expected_top5: expected_top5_prob.append(expected_topk[index]) model = ModelWrapper(finn_onnx) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(InsertTopK()) # get initializer from Mul that will be absorbed into topk a0 = model.get_initializer(model.graph.node[-2].input[1]) model = model.transform(absorb.AbsorbScalarMulAddIntoTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveUniqueParameterTensors()) model = model.transform(GiveReadableTensorNames()) model.save(export_onnx_path + "/quant_mobilenet_v1_4b_wo_preproc.onnx") model = model.transform(MergeONNXModels(preproc_model)) model.save(export_onnx_path + "/quant_mobilenet_v1_4b.onnx") idict = {model.graph.input[0].name: img_np} odict = oxe.execute_onnx(model, idict, True) produced = odict[model.graph.output[0].name] produced_prob = odict["TopK_0_out0"] * a0 assert (produced.flatten() == expected_top5).all() assert np.isclose(produced_prob.flatten(), expected_top5_prob).all()