Exemple #1
0
def _getOrderedLines(IDs, coordinates, thresholdDistance = 0.0):
    """
    This function takes a set of IDs and corresponding coordinates and makes
    a set of closed curves.

    :Parameters:

      - `IDs`: An array of integers.
      - `coordinates`: An array of coordinates of the same length as IDs.

    The following are a general set of test cases.

       >>> _getOrderedLines((0, 1, 2, 3), ((0, 0), (2, 0), (0, 1), (2, 1)))
       [[0, 2, 3, 1]]
       >>> _getOrderedLines((0, 1, 2, 3, 4), ((-10, -10), (0, 0), (2, 0), (0, 1), (2, 1)))
       [[0], [1, 3, 4, 2]]
       >>> _getOrderedLines((0, 1, 2, 3), ((0, 0), (0.9, 0), (0, 1), (1, 1)))
       [[0, 1, 3, 2]]
       >>> _getOrderedLines((0, 1, 2, 3, 4, 5), ((0, 0), (1, 0), (2, 0), (0, 1.1), (1, 1.1), (2, 1.1)))
       [[0, 1, 2, 5, 4, 3]]
       >>> _getOrderedLines((4, 5, 0, 1, 3, 2, 6), ((0, 0), (1, 0), (3, 0), (0, 1.1), (1, 1.1), (3, 1), (4, 1)))
       [[4, 5, 3, 1], [0, 2, 6]]
       >>> _getOrderedLines((4, 5, 3, 2, 1, 0, 9, 8, 7, 6), ((0, 0), (1, 0), (0, 1.1), (1, 1.1), (0, 3), (1, 3), (-1, 4), (2, 4), (-2, 4), (3, 4)))
       [[4, 5, 2, 3], [7, 9, 1, 0, 8, 6]]
       >>> from builtins import range
       >>> _getOrderedLines(list(range(7)), ((-7, 0), (-6, 0), (-5, 0), (0, 0), (5, 0), (6, 0), (7, 0)))
       [[0, 1, 2], [3], [4, 5, 6]]
       >>> from builtins import range
       >>> _getOrderedLines(list(range(7)), ((-7, 0), (-6, 0), (-5, 0), (0, 0), (5, 0), (6, 0), (7, 0)), thresholdDistance = 5.5)
       [[0, 1, 2, 3, 4, 5, 6]]
    """

    from fipy.tools import numerix
    coordinates = numerix.array(coordinates)
    closeIDs = numerix.zeros((len(IDs), len(IDs)), 'l')
    vertices = []
    for ID in IDs:
        distances = numerix.zeros(len(IDs), 'd')
        for i in range(len(coordinates[0,:])):
            distances += (coordinates[:, i] - coordinates[ID, i])**2
        vertices.append(_Vertex(ID, coordinates[ID, 0], coordinates[ID, 1]))
        closeIDs[ID,:] = numerix.argsort(distances)


    for ID in IDs:
        i = 1
        closeVertices = []
        while i < 3 or vertices[ID].distance(vertices[closeIDs[ID, i]]) < thresholdDistance:
            closeVertices.append(vertices[closeIDs[ID, i]])
            i += 1

        vertices[ID].setCloseVertices(closeVertices)

    listOfVertexLists = []

    for vertex in vertices:
        if not vertex.getInLine():
            listOfVertexLists.append(_Line(vertex).getVertexListIDs())

    return listOfVertexLists
Exemple #2
0
def _orderVertices(vertexCoords, vertices):
    coordinates = numerix.take(vertexCoords, vertices, axis=1)
    centroid = numerix.add.reduce(coordinates, axis=1) / coordinates.shape[1]
    coordinates = coordinates - centroid[..., numerix.newaxis]
    coordinates = numerix.where(coordinates == 0, 1.e-10, coordinates) ## to prevent division by zero
    angles = numerix.arctan(coordinates[1] / coordinates[0]) + numerix.where(coordinates[0] < 0, numerix.pi, 0) ## angles go from -pi / 2 to 3*pi / 2
    sortorder = numerix.argsort(angles)
    return numerix.take(vertices, sortorder)
Exemple #3
0
def _orderVertices(vertexCoords, vertices):
    coordinates = numerix.take(vertexCoords, vertices)
    centroid = numerix.add.reduce(coordinates) / coordinates.shape[0]
    coordinates = coordinates - centroid
    # to prevent division by zero
    coordinates = numerix.where(coordinates == 0, 1.e-100, coordinates) 
    # angles go from -pi / 2 to 3*pi / 2
    angles = numerix.arctan(coordinates[:, 1] / coordinates[:, 0]) \
               + numerix.where(coordinates[:, 0] < 0, numerix.pi, 0) 
    sortorder = numerix.argsort(angles)
    return numerix.take(vertices, sortorder)
Exemple #4
0
def _orderVertices(vertexCoords, vertices):
    coordinates = numerix.take(vertexCoords, vertices)
    centroid = numerix.add.reduce(coordinates) / coordinates.shape[0]
    coordinates = coordinates - centroid
    # to prevent division by zero
    coordinates = numerix.where(coordinates == 0, 1.e-100, coordinates)
    # angles go from -pi / 2 to 3*pi / 2
    angles = numerix.arctan(coordinates[:, 1] / coordinates[:, 0]) \
               + numerix.where(coordinates[:, 0] < 0, numerix.pi, 0)
    sortorder = numerix.argsort(angles)
    return numerix.take(vertices, sortorder)
Exemple #5
0
    def _getAddedMeshValues(self, other, resolution=1e-2):
        """Calculate the parameters to define a concatenation of `other` with `self`

        Parameters
        ----------
        other : ~fipy.meshes.mesh.Mesh
             The `Mesh` to concatenate with `self`
        resolution : float
            How close vertices have to be (relative to the smallest
            cell-to-cell distance in either mesh) to be considered the same

        Returns
        -------
        dict
            (`vertexCoords`, `faceVertexIDs`, `cellFaceIDs`) for the new mesh.
        """

        selfc = self._concatenableMesh
        otherc = other._concatenableMesh

        selfNumFaces = selfc.faceVertexIDs.shape[-1]
        selfNumVertices = selfc.vertexCoords.shape[-1]
        otherNumFaces = otherc.faceVertexIDs.shape[-1]
        otherNumVertices = otherc.vertexCoords.shape[-1]
        ## check dimensions
        if(selfc.vertexCoords.shape[0] != otherc.vertexCoords.shape[0]):
            raise MeshAdditionError("Dimensions do not match")

        ## compute vertex correlates

#         from fipy.tools.debug import PRINT
#         PRINT("selfNumFaces", selfNumFaces)
#         PRINT("otherNumFaces", otherNumVertices)
#         PRINT("selfNumVertices", selfNumVertices)
#         PRINT("otherNumVertices", otherNumVertices)
# 
#         from fipy.tools.debug import PRINT
#         from fipy.tools.debug import PRINT
#         PRINT("otherExt", otherc.exteriorFaces.value)
#         raw_input()
#         PRINT("selfExt", selfc.exteriorFaces.value)
# 
#         PRINT("self filled", selfc.faceVertexIDs.filled())
#         PRINT("othe filled", otherc.faceVertexIDs.filled())
#         raw_input()
# 
#         PRINT("selfc.faceVertexIDs.filled()\n",selfc.faceVertexIDs.filled())
#         PRINT("flat\n",selfc.faceVertexIDs.filled()[...,
#             selfc.exteriorFaces.value].flatten())
#         PRINT("selfc.exteriorFaces.value\n",selfc.exteriorFaces.value)
#         PRINT("extfaces type", type(selfc.exteriorFaces))
#         PRINT("extfaces mesh", selfc.exteriorFaces.mesh)

        ## only try to match along the operation manifold
        if hasattr(self, "opManifold"):
            self_faces = self.opManifold(selfc)
        else:
            self_faces = selfc.exteriorFaces.value
        if hasattr(other, "opManifold"):
            other_faces = other.opManifold(otherc)
        else:
            other_faces = otherc.exteriorFaces.value

        ## only try to match exterior (X) vertices
        self_Xvertices = numerix.unique(selfc.faceVertexIDs.filled()[...,
            self_faces].flatten())
        other_Xvertices = numerix.unique(otherc.faceVertexIDs.filled()[...,
            other_faces].flatten())

        self_XvertexCoords = selfc.vertexCoords[..., self_Xvertices]
        other_XvertexCoords = otherc.vertexCoords[..., other_Xvertices]

        closest = numerix.nearest(self_XvertexCoords, other_XvertexCoords)

        # just because they're closest, doesn't mean they're close
        tmp = self_XvertexCoords[..., closest] - other_XvertexCoords
        distance = numerix.sqrtDot(tmp, tmp)
        # only want vertex pairs that are 100x closer than the smallest
        # cell-to-cell distance
        close = distance < resolution * min(selfc._cellToCellDistances.min(),
                                            otherc._cellToCellDistances.min())
        vertexCorrelates = numerix.array((self_Xvertices[closest[close]],
                                          other_Xvertices[close]))

        # warn if meshes don't touch, but allow it
        if (selfc._numberOfVertices > 0
            and otherc._numberOfVertices > 0
            and vertexCorrelates.shape[-1] == 0):
            import warnings
            warnings.warn("Vertices are not aligned", UserWarning, stacklevel=4)

        ## compute face correlates

        # ensure that both sets of faceVertexIDs have the same maximum number of (masked) elements
        self_faceVertexIDs = selfc.faceVertexIDs
        other_faceVertexIDs = otherc.faceVertexIDs

        diff = self_faceVertexIDs.shape[0] - other_faceVertexIDs.shape[0]
        if diff > 0:
            other_faceVertexIDs = numerix.append(other_faceVertexIDs,
                                                 -1 * numerix.ones((diff,)
                                                                   + other_faceVertexIDs.shape[1:], 'l'),
                                                 axis=0)
            other_faceVertexIDs = MA.masked_values(other_faceVertexIDs, -1)
        elif diff < 0:
            self_faceVertexIDs = numerix.append(self_faceVertexIDs,
                                                -1 * numerix.ones((-diff,)
                                                                  + self_faceVertexIDs.shape[1:], 'l'),
                                                axis=0)
            self_faceVertexIDs = MA.masked_values(self_faceVertexIDs, -1)

        # want self's Faces for which all faceVertexIDs are in vertexCorrelates
        self_matchingFaces = numerix.in1d(self_faceVertexIDs,
                                          vertexCorrelates[0]).reshape(self_faceVertexIDs.shape).all(axis=0).nonzero()[0]

        # want other's Faces for which all faceVertexIDs are in vertexCorrelates
        other_matchingFaces = numerix.in1d(other_faceVertexIDs,
                                           vertexCorrelates[1]).reshape(other_faceVertexIDs.shape).all(axis=0).nonzero()[0]

        # map other's Vertex IDs to new Vertex IDs,
        # accounting for overlaps with self's Vertex IDs
        vertex_map = numerix.empty(otherNumVertices, dtype=numerix.INT_DTYPE)
        verticesToAdd = numerix.delete(numerix.arange(otherNumVertices), vertexCorrelates[1])
        vertex_map[verticesToAdd] = numerix.arange(otherNumVertices - len(vertexCorrelates[1])) + selfNumVertices
        vertex_map[vertexCorrelates[1]] = vertexCorrelates[0]

        # calculate hashes of faceVertexIDs for comparing Faces

        if self_matchingFaces.shape[-1] == 0:
            self_faceHash = numerix.empty(self_matchingFaces.shape[:-1] + (0,), dtype="str")
        else:
            # sort each of self's Face's vertexIDs for canonical comparison
            self_faceHash = numerix.sort(self_faceVertexIDs[..., self_matchingFaces], axis=0)
            # then hash the Faces for comparison (NumPy set operations are only for 1D arrays)
            self_faceHash = numerix.apply_along_axis(str, axis=0, arr=self_faceHash)

        face_sort = numerix.argsort(self_faceHash)
        self_faceHash = self_faceHash[face_sort]
        self_matchingFaces = self_matchingFaces[face_sort]

        if other_matchingFaces.shape[-1] == 0:
            other_faceHash = numerix.empty(other_matchingFaces.shape[:-1] + (0,), dtype="str")
        else:
            # convert each of other's Face's vertexIDs to new IDs
            other_faceHash = vertex_map[other_faceVertexIDs[..., other_matchingFaces]]
            # sort each of other's Face's vertexIDs for canonical comparison
            other_faceHash = numerix.sort(other_faceHash, axis=0)
            # then hash the Faces for comparison (NumPy set operations are only for 1D arrays)
            other_faceHash = numerix.apply_along_axis(str, axis=0, arr=other_faceHash)

        face_sort = numerix.argsort(other_faceHash)
        other_faceHash = other_faceHash[face_sort]
        other_matchingFaces = other_matchingFaces[face_sort]

        self_matchingFaces = self_matchingFaces[numerix.in1d(self_faceHash,
                                                             other_faceHash)]
        other_matchingFaces = other_matchingFaces[numerix.in1d(other_faceHash,
                                                               self_faceHash)]

        faceCorrelates = numerix.array((self_matchingFaces,
                                        other_matchingFaces))

        # warn if meshes don't touch, but allow it
        if (selfc.numberOfFaces > 0
            and otherc.numberOfFaces > 0
            and faceCorrelates.shape[-1] == 0):
            import warnings
            warnings.warn("Faces are not aligned", UserWarning, stacklevel=4)

        # map other's Face IDs to new Face IDs,
        # accounting for overlaps with self's Face IDs
        face_map = numerix.empty(otherNumFaces, dtype=numerix.INT_DTYPE)
        facesToAdd = numerix.delete(numerix.arange(otherNumFaces), faceCorrelates[1])
        face_map[facesToAdd] = numerix.arange(otherNumFaces - len(faceCorrelates[1])) + selfNumFaces
        face_map[faceCorrelates[1]] = faceCorrelates[0]

        other_faceVertexIDs = vertex_map[otherc.faceVertexIDs[..., facesToAdd]]

        # ensure that both sets of cellFaceIDs have the same maximum number of (masked) elements
        self_cellFaceIDs = selfc.cellFaceIDs
        other_cellFaceIDs = face_map[otherc.cellFaceIDs]
        diff = self_cellFaceIDs.shape[0] - other_cellFaceIDs.shape[0]
        if diff > 0:
            other_cellFaceIDs = numerix.append(other_cellFaceIDs,
                                               -1 * numerix.ones((diff,)
                                                                 + other_cellFaceIDs.shape[1:], 'l'),
                                               axis=0)
            other_cellFaceIDs = MA.masked_values(other_cellFaceIDs, -1)
        elif diff < 0:
            self_cellFaceIDs = numerix.append(self_cellFaceIDs,
                                              -1 * numerix.ones((-diff,)
                                                                + self_cellFaceIDs.shape[1:], 'l'),
                                              axis=0)
            self_cellFaceIDs = MA.masked_values(self_cellFaceIDs, -1)

        # concatenate everything and return
        return {
            'vertexCoords': numerix.concatenate((selfc.vertexCoords,
                                                 otherc.vertexCoords[..., verticesToAdd]), axis=1),
            'faceVertexIDs': numerix.concatenate((self_faceVertexIDs,
                                                  other_faceVertexIDs), axis=1),
            'cellFaceIDs': MA.concatenate((self_cellFaceIDs,
                                           other_cellFaceIDs), axis=1)
            }
Exemple #6
0
 def _faceOrder(self):
     # note: argsort does not work as documented:
     #   Array of indices that sort a along the specified axis. In other words, a[index_array] yields a sorted a.
     # No, it's not.
     # We need both the sorted values and the sort order.
     return numerix.argsort(self._unsortedNodesPerFace, axis=0)[::-1]
Exemple #7
0
    def _calcTrialValue(self, id, evaluatedFlag, extensionVariable):
        adjIDs = self.cellToCellIDs[...,id]
        adjEvaluatedFlag = numerix.take(evaluatedFlag, adjIDs)
        adjValues = numerix.take(self.value, adjIDs)
        adjValues = numerix.where(adjEvaluatedFlag, adjValues, 1e+10)
        try:
            indices = numerix.argsort(abs(adjValues))
        except TypeError:
            # numpy 1.1 raises a TypeError when using argsort function
            indices = abs(adjValues).argsort()
        sign = (self.value[id] > 0) * 2 - 1
        d0 = self.cellToCellDistances[indices[0], id]
        v0 = self.value[..., adjIDs[indices[0]]]
        e0 = extensionVariable[..., adjIDs[indices[0]]]

        N = numerix.sum(adjEvaluatedFlag)

        index0 = indices[0]
        index1 = indices[1]
        index2 = indices[self.mesh.getDim()]
        
        if N > 1:
            n0 = self.cellNormals[..., index0, id]
            n1 = self.cellNormals[..., index1, id]

            if self.mesh.getDim() == 2:
                cross = (n0[0] * n1[1] - n0[1] * n1[0])
            else:
                cross = 0.0
                
            if abs(cross) < 0.1:
                if N == 2:
                    N = 1
                elif N == 3:
                    index1 = index2

        if N == 0:
            raise Exception 
        elif N == 1:
            return v0 + sign * d0, e0
        else:
            d1 = self.cellToCellDistances[index1, id]
            n0 = self.cellNormals[..., index0, id]
            n1 = self.cellNormals[..., index1, id]
            v1 = self.value[..., adjIDs[index1]]
            
            crossProd = d0 * d1 * (n0[0] * n1[1] - n0[1] * n1[0])
            dotProd = d0 * d1 * numerix.dot(n0, n1)
            dsq = d0**2 + d1**2 - 2 * dotProd
            
            top = -v0 * (dotProd - d1**2) - v1 * (dotProd - d0**2)
            sqrt = crossProd**2 *(dsq - (v0 - v1)**2)
            sqrt = numerix.sqrt(max(sqrt, 0))



            dis = (top + sign * sqrt) / dsq

            ## extension variable

            e1 = extensionVariable[..., adjIDs[index1]]
            a0 = self.cellAreas[index0, id]
            a1 = self.cellAreas[index1, id]

            if self.value[id] > 0:
                phi = max(dis, 0)
            else:
                phi = min(dis, 0)

            n0grad = a0 * abs(v0 - phi) / d0
            n1grad = a1 * abs(v1 - phi) / d1
            
            return dis, (e0 * n0grad + e1 * n1grad) / (n0grad + n1grad)
Exemple #8
0
    def _getAddedMeshValues(self, other, resolution=1e-2):
        """Calculate the parameters to define a concatenation of `other` with `self`
        
        :Parameters:
          - `other`: The :class:`~fipy.meshes.numMesh.Mesh` to concatenate with `self`
          - `resolution`: How close vertices have to be (relative to the smallest 
            cell-to-cell distance in either mesh) to be considered the same

        :Returns:
          A `dict` with 3 elements: the new mesh vertexCoords, faceVertexIDs, and cellFaceIDs.
        """
        
        selfc = self._getConcatenableMesh()
        other = other._getConcatenableMesh()

        selfNumFaces = selfc.faceVertexIDs.shape[-1]
        selfNumVertices = selfc.vertexCoords.shape[-1]
        otherNumFaces = other.faceVertexIDs.shape[-1]
        otherNumVertices = other.vertexCoords.shape[-1]
        ## check dimensions
        if(selfc.vertexCoords.shape[0] != other.vertexCoords.shape[0]):
            raise MeshAdditionError, "Dimensions do not match"
            
        ## compute vertex correlates

        ## only try to match exterior (X) vertices
        self_Xvertices = numerix.unique(selfc._getFaceVertexIDs().filled()[..., selfc.getExteriorFaces().getValue()].flatten())
        other_Xvertices = numerix.unique(other._getFaceVertexIDs().filled()[..., other.getExteriorFaces().getValue()].flatten())

        self_XvertexCoords = selfc.vertexCoords[..., self_Xvertices]
        other_XvertexCoords = other.vertexCoords[..., other_Xvertices]
        
        # lifted from Mesh._getNearestCellID()
        other_vertexCoordMap = numerix.resize(other_XvertexCoords, 
                                              (self_XvertexCoords.shape[-1], 
                                               other_XvertexCoords.shape[0], 
                                               other_XvertexCoords.shape[-1])).swapaxes(0,1)
        tmp = self_XvertexCoords[..., numerix.newaxis] - other_vertexCoordMap
        closest = numerix.argmin(numerix.dot(tmp, tmp), axis=0)
        
        # just because they're closest, doesn't mean they're close
        tmp = self_XvertexCoords[..., closest] - other_XvertexCoords
        distance = numerix.sqrtDot(tmp, tmp)
        # only want vertex pairs that are 100x closer than the smallest 
        # cell-to-cell distance
        close = distance < resolution * min(selfc._getCellToCellDistances().min(), 
                                            other._getCellToCellDistances().min())
        vertexCorrelates = numerix.array((self_Xvertices[closest[close]],
                                          other_Xvertices[close]))
        
        # warn if meshes don't touch, but allow it
        if (selfc._getNumberOfVertices() > 0 
            and other._getNumberOfVertices() > 0 
            and vertexCorrelates.shape[-1] == 0):
            import warnings
            warnings.warn("Vertices are not aligned", UserWarning, stacklevel=4)

        ## compute face correlates

        # ensure that both sets of faceVertexIDs have the same maximum number of (masked) elements
        self_faceVertexIDs = selfc.faceVertexIDs
        other_faceVertexIDs = other.faceVertexIDs

        diff = self_faceVertexIDs.shape[0] - other_faceVertexIDs.shape[0]
        if diff > 0:
            other_faceVertexIDs = numerix.append(other_faceVertexIDs, 
                                                 -1 * numerix.ones((diff,) 
                                                                   + other_faceVertexIDs.shape[1:]),
                                                 axis=0)
            other_faceVertexIDs = MA.masked_values(other_faceVertexIDs, -1)
        elif diff < 0:
            self_faceVertexIDs = numerix.append(self_faceVertexIDs, 
                                                -1 * numerix.ones((-diff,) 
                                                                  + self_faceVertexIDs.shape[1:]),
                                                axis=0)
            self_faceVertexIDs = MA.masked_values(self_faceVertexIDs, -1)

        # want self's Faces for which all faceVertexIDs are in vertexCorrelates
        self_matchingFaces = numerix.in1d(self_faceVertexIDs, 
                                          vertexCorrelates[0]).reshape(self_faceVertexIDs.shape).all(axis=0).nonzero()[0]

        # want other's Faces for which all faceVertexIDs are in vertexCorrelates
        other_matchingFaces = numerix.in1d(other_faceVertexIDs, 
                                           vertexCorrelates[1]).reshape(other_faceVertexIDs.shape).all(axis=0).nonzero()[0]
                                           
        # map other's Vertex IDs to new Vertex IDs, 
        # accounting for overlaps with self's Vertex IDs
        vertex_map = numerix.empty(otherNumVertices, dtype=int)
        verticesToAdd = numerix.delete(numerix.arange(otherNumVertices), vertexCorrelates[1])
        vertex_map[verticesToAdd] = numerix.arange(otherNumVertices - len(vertexCorrelates[1])) + selfNumVertices
        vertex_map[vertexCorrelates[1]] = vertexCorrelates[0]

        # calculate hashes of faceVertexIDs for comparing Faces
        
        if self_matchingFaces.shape[-1] == 0:
            self_faceHash = numerix.empty(self_matchingFaces.shape[:-1] + (0,), dtype="str")
        else:
            # sort each of self's Face's vertexIDs for canonical comparison
            self_faceHash = numerix.sort(self_faceVertexIDs[..., self_matchingFaces], axis=0)
            # then hash the Faces for comparison (NumPy set operations are only for 1D arrays)
            self_faceHash = numerix.apply_along_axis(str, axis=0, arr=self_faceHash)
            
        face_sort = numerix.argsort(self_faceHash)
        self_faceHash = self_faceHash[face_sort]
        self_matchingFaces = self_matchingFaces[face_sort]

        if other_matchingFaces.shape[-1] == 0:
            other_faceHash = numerix.empty(other_matchingFaces.shape[:-1] + (0,), dtype="str")
        else:
            # convert each of other's Face's vertexIDs to new IDs
            other_faceHash = vertex_map[other_faceVertexIDs[..., other_matchingFaces]]
            # sort each of other's Face's vertexIDs for canonical comparison
            other_faceHash = numerix.sort(other_faceHash, axis=0)
            # then hash the Faces for comparison (NumPy set operations are only for 1D arrays)
            other_faceHash = numerix.apply_along_axis(str, axis=0, arr=other_faceHash)

        face_sort = numerix.argsort(other_faceHash)
        other_faceHash = other_faceHash[face_sort]
        other_matchingFaces = other_matchingFaces[face_sort]

        self_matchingFaces = self_matchingFaces[numerix.in1d(self_faceHash, 
                                                             other_faceHash)]
        other_matchingFaces = other_matchingFaces[numerix.in1d(other_faceHash, 
                                                               self_faceHash)]
        
        faceCorrelates = numerix.array((self_matchingFaces,
                                        other_matchingFaces))

        # warn if meshes don't touch, but allow it
        if (selfc._getNumberOfFaces() > 0 
            and other._getNumberOfFaces() > 0 
            and faceCorrelates.shape[-1] == 0):
            import warnings
            warnings.warn("Faces are not aligned", UserWarning, stacklevel=4)

        # map other's Face IDs to new Face IDs, 
        # accounting for overlaps with self's Face IDs
        face_map = numerix.empty(otherNumFaces, dtype=int)
        facesToAdd = numerix.delete(numerix.arange(otherNumFaces), faceCorrelates[1])
        face_map[facesToAdd] = numerix.arange(otherNumFaces - len(faceCorrelates[1])) + selfNumFaces
        face_map[faceCorrelates[1]] = faceCorrelates[0]
        
        other_faceVertexIDs = vertex_map[other.faceVertexIDs[..., facesToAdd]]
        
        # ensure that both sets of cellFaceIDs have the same maximum number of (masked) elements
        self_cellFaceIDs = selfc.cellFaceIDs
        other_cellFaceIDs = face_map[other.cellFaceIDs]
        diff = self_cellFaceIDs.shape[0] - other_cellFaceIDs.shape[0]
        if diff > 0:
            other_cellFaceIDs = numerix.append(other_cellFaceIDs, 
                                               -1 * numerix.ones((diff,) 
                                                                 + other_cellFaceIDs.shape[1:]),
                                               axis=0)
            other_cellFaceIDs = MA.masked_values(other_cellFaceIDs, -1)
        elif diff < 0:
            self_cellFaceIDs = numerix.append(self_cellFaceIDs, 
                                              -1 * numerix.ones((-diff,) 
                                                                + self_cellFaceIDs.shape[1:]),
                                              axis=0)
            self_cellFaceIDs = MA.masked_values(self_cellFaceIDs, -1)

        # concatenate everything and return
        return {
            'vertexCoords': numerix.concatenate((selfc.vertexCoords, 
                                                 other.vertexCoords[..., verticesToAdd]), axis=1), 
            'faceVertexIDs': numerix.concatenate((self_faceVertexIDs, 
                                                  other_faceVertexIDs), axis=1), 
            'cellFaceIDs': MA.concatenate((self_cellFaceIDs, 
                                           other_cellFaceIDs), axis=1)
            }
Exemple #9
0
 def _faceOrder(self):
     # note: argsort does not work as documented:
     #   Array of indices that sort a along the specified axis. In other words, a[index_array] yields a sorted a.
     # No, it's not.
     # We need both the sorted values and the sort order.
     return numerix.argsort(self._unsortedNodesPerFace, axis=0)[::-1]