def su_stabilisation_k_bar(): from firedrake_fluids.stabilisation import Stabilisation errors = [] for n in [4, 8, 16, 32]: mesh = UnitSquareMesh(n, n) function_space = FunctionSpace(mesh, "CG", 1) viscosity = 0.1 magnitude = Function(function_space).interpolate( Expression("sqrt(pow(x[0], 2) + pow(x[1], 2))")) cellsize_exact = sqrt((1.0 / n)**2 + (1.0 / n)**2) k_bar_exact = Function(function_space).interpolate( Expression( "sqrt(pow(x[0], 2) + pow(x[1], 2))*(-2.00*0.1/(sqrt(pow(x[0], 2) + pow(x[1], 2))) + %f*1/tanh(0.500*sqrt(pow(x[0], 2) + pow(x[1], 2))*%f/0.1))" % (cellsize_exact, cellsize_exact))) stabilisation = Stabilisation(mesh, function_space, CellSize(mesh)) k_bar = stabilisation.k_bar(magnitude, viscosity) test = TestFunction(function_space) trial = TrialFunction(function_space) solution = Function(function_space) solve(inner(test, trial) * dx == test * k_bar * dx, solution, bcs=[]) errors.append( sqrt(assemble(dot(k_bar - k_bar_exact, k_bar - k_bar_exact) * dx))) return errors
def su_stabilisation_k_bar(): from firedrake_fluids.stabilisation import Stabilisation errors = [] for n in [4, 8, 16, 32]: mesh = UnitSquareMesh(n, n) function_space = FunctionSpace(mesh, "CG", 1) viscosity = 0.1 magnitude = Function(function_space).interpolate(Expression("sqrt(pow(x[0], 2) + pow(x[1], 2))")) cellsize_exact = sqrt((1.0/n)**2 + (1.0/n)**2) k_bar_exact = Function(function_space).interpolate(Expression("sqrt(pow(x[0], 2) + pow(x[1], 2))*(-2.00*0.1/(sqrt(pow(x[0], 2) + pow(x[1], 2))) + %f*1/tanh(0.500*sqrt(pow(x[0], 2) + pow(x[1], 2))*%f/0.1))" % (cellsize_exact, cellsize_exact))) stabilisation = Stabilisation(mesh, function_space, CellSize(mesh)) k_bar = stabilisation.k_bar(magnitude, viscosity) test = TestFunction(function_space) trial = TrialFunction(function_space) solution = Function(function_space) solve(inner(test, trial)*dx == test*k_bar*dx, solution, bcs=[]) errors.append(sqrt(assemble(dot(k_bar - k_bar_exact, k_bar - k_bar_exact) * dx))) return errors
def run(self, array=None, annotate=False, checkpoint=None): """ Perform the simulation! """ # The solution field defined on the mixed function space solution = Function(self.W, name="Solution", annotate=annotate) # The solution from the previous time-step. At t=0, this holds the initial conditions. solution_old = Function(self.W, name="SolutionOld", annotate=annotate) # Assign the initial condition initial_condition = self.get_initial_condition(checkpoint=checkpoint) solution_old.assign(initial_condition, annotate=annotate) # Get the test functions test_functions = TestFunctions(self.W) w = test_functions[0]; v = test_functions[1] LOG.info("Test functions created.") # These are like the TrialFunctions, but are just regular Functions here because we want to solve a non-linear problem # 'u' and 'h' are the velocity and free surface perturbation, respectively. functions = split(solution) u = functions[0]; h = functions[1] LOG.info("Trial functions created.") functions_old = split(solution_old) u_old = functions_old[0]; h_old = functions_old[1] # Write initial conditions to file LOG.info("Writing initial conditions to file...") self.output_functions["Velocity"].assign(solution_old.split()[0], annotate=False) self.output_files["Velocity"] << self.output_functions["Velocity"] self.output_functions["FreeSurfacePerturbation"].assign(solution_old.split()[1], annotate=False) self.output_files["FreeSurfacePerturbation"] << self.output_functions["FreeSurfacePerturbation"] # Construct the collection of all the individual terms in their weak form. LOG.info("Constructing form...") F = 0 theta = self.options["theta"] dt = self.options["dt"] dimension = self.options["dimension"] g_magnitude = self.options["g_magnitude"] # Is the Velocity field represented by a discontinous function space? dg = (self.W.sub(0).ufl_element().family() == "Discontinuous Lagrange") # Mean free surface height h_mean = Function(self.W.sub(1), name="FreeSurfaceMean", annotate=False) h_mean.interpolate(ExpressionFromOptions(path = "/system/core_fields/scalar_field::FreeSurfaceMean/value").get_expression()) # Weight u and h by theta to obtain the theta time-stepping scheme. assert(theta >= 0.0 and theta <= 1.0) LOG.info("Time-stepping scheme using theta = %g" % (theta)) u_mid = (1.0 - theta) * u_old + theta * u h_mid = (1.0 - theta) * h_old + theta * h # The total height of the free surface. H = h_mean + h # Simple P1 function space, to be used in the stabilisation routines (if applicable). P1 = FunctionSpace(self.mesh, "CG", 1) cellsize = CellSize(self.mesh) # Normal vector to each element facet n = FacetNormal(self.mesh) # Mass term if(self.options["have_momentum_mass"]): LOG.debug("Momentum equation: Adding mass term...") M_momentum = (1.0/dt)*(inner(w, u) - inner(w, u_old))*dx F += M_momentum # Advection term if(self.options["have_momentum_advection"]): LOG.debug("Momentum equation: Adding advection term...") if(self.options["integrate_advection_term_by_parts"]): outflow = (dot(u_mid, n) + abs(dot(u_mid, n)))/2.0 A_momentum = -inner(dot(u_mid, grad(w)), u_mid)*dx - inner(dot(u_mid, grad(u_mid)), w)*dx A_momentum += inner(w, outflow*u_mid)*ds if(dg): # Only add interior facet integrals if we are dealing with a discontinous Galerkin discretisation. A_momentum += dot(outflow('+')*u_mid('+') - outflow('-')*u_mid('-'), jump(w))*dS else: A_momentum = inner(dot(grad(u_mid), u_mid), w)*dx F += A_momentum # Viscous stress term. Note that the viscosity is kinematic (not dynamic). if(self.options["have_momentum_stress"]): LOG.debug("Momentum equation: Adding stress term...") viscosity = Function(self.W.sub(1)) # Background viscosity background_viscosity = Function(self.W.sub(1)).interpolate(Expression(libspud.get_option("/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value/constant"))) viscosity.assign(background_viscosity) # Eddy viscosity if(self.options["have_turbulence_parameterisation"]): LOG.debug("Momentum equation: Adding turbulence parameterisation...") base_option_path = "/system/equations/momentum_equation/turbulence_parameterisation" # Large eddy simulation (LES) if(libspud.have_option(base_option_path + "/les")): density = Constant(1.0) # We divide through by density in the momentum equation, so just set this to 1.0 for now. smagorinsky_coefficient = Constant(libspud.get_option(base_option_path + "/les/smagorinsky/smagorinsky_coefficient")) les = LES(self.mesh, self.W.sub(1), u_mid, density, smagorinsky_coefficient) # Add on eddy viscosity viscosity += les.eddy_viscosity # Stress tensor: tau = grad(u) + transpose(grad(u)) - (2/3)*div(u) if(not dg): # Perform a double dot product of the stress tensor and grad(w). K_momentum = -viscosity*inner(grad(u_mid) + grad(u_mid).T, grad(w))*dx K_momentum += viscosity*(2.0/3.0)*inner(div(u_mid)*Identity(dimension), grad(w))*dx else: # Interior penalty method cellsize = Constant(0.2) # In general, we should use CellSize(self.mesh) instead. alpha = 1/cellsize # Penalty parameter. K_momentum = -viscosity('+')*inner(grad(u_mid), grad(w))*dx for dim in range(self.options["dimension"]): K_momentum += -viscosity('+')*(alpha('+')/cellsize('+'))*dot(jump(w[dim], n), jump(u_mid[dim], n))*dS K_momentum += viscosity('+')*dot(avg(grad(w[dim])), jump(u_mid[dim], n))*dS + viscosity('+')*dot(jump(w[dim], n), avg(grad(u_mid[dim])))*dS F -= K_momentum # Negative sign here because we are bringing the stress term over from the RHS. # The gradient of the height of the free surface, h LOG.debug("Momentum equation: Adding gradient term...") C_momentum = -g_magnitude*inner(w, grad(h_mid))*dx F -= C_momentum # Quadratic drag term in the momentum equation if(self.options["have_drag"]): LOG.debug("Momentum equation: Adding drag term...") base_option_path = "/system/equations/momentum_equation/drag_term" # Get the bottom drag/friction coefficient. LOG.debug("Momentum equation: Adding bottom drag contribution...") bottom_drag = ExpressionFromOptions(path=base_option_path+"/scalar_field::BottomDragCoefficient/value", t=0).get_expression() bottom_drag = Function(self.W.sub(1)).interpolate(bottom_drag) # Magnitude of the velocity field magnitude = sqrt(dot(u_old, u_old)) # Form the drag term if(array): LOG.debug("Momentum equation: Adding turbine drag contribution...") drag_coefficient = bottom_drag + array.turbine_drag() else: drag_coefficient = bottom_drag D_momentum = -inner(w, (drag_coefficient*magnitude/H)*u_mid)*dx F -= D_momentum # The mass term in the shallow water continuity equation # (i.e. an advection equation for the free surface height, h) if(self.options["have_continuity_mass"]): LOG.debug("Continuity equation: Adding mass term...") M_continuity = (1.0/dt)*(inner(v, h) - inner(v, h_old))*dx F += M_continuity # Append any Expression objects for weak BCs here. weak_bc_expressions = [] # Divergence term in the shallow water continuity equation LOG.debug("Continuity equation: Adding divergence term...") if(self.options["integrate_continuity_equation_by_parts"]): LOG.debug("The divergence term is being integrated by parts.") Ct_continuity = - H*inner(u_mid, grad(v))*dx if(dg): Ct_continuity += inner(jump(v, n), avg(H*u_mid))*dS # Add in the surface integrals, but check to see if any boundary conditions need to be applied weakly here. boundary_markers = self.mesh.exterior_facets.unique_markers for marker in boundary_markers: marker = int(marker) # ds() will not accept markers of type 'numpy.int32', so convert it to type 'int' here. bc_type = None for i in range(0, libspud.option_count("/system/core_fields/vector_field::Velocity/boundary_condition")): bc_path = "/system/core_fields/vector_field::Velocity/boundary_condition[%d]" % i if(not (marker in libspud.get_option(bc_path + "/surface_ids"))): # This BC is not associated with this marker, so skip it. continue # Determine the BC type. if(libspud.have_option(bc_path + "/type::no_normal_flow")): bc_type = "no_normal_flow" elif(libspud.have_option(bc_path + "/type::dirichlet")): if(libspud.have_option(bc_path + "/type::dirichlet/apply_weakly")): bc_type = "weak_dirichlet" else: bc_type = "dirichlet" elif(libspud.have_option(bc_path + "/type::flather")): bc_type = "flather" # Apply the boundary condition... try: LOG.debug("Applying Velocity BC of type '%s' to surface ID %d..." % (bc_type, marker)) if(bc_type == "flather"): # The known exterior value for the Velocity. u_ext = ExpressionFromOptions(path = (bc_path + "/type::flather/exterior_velocity"), t=0).get_expression() Ct_continuity += H*inner(Function(self.W.sub(0)).interpolate(u_ext), n)*v*ds(int(marker)) # The known exterior value for the FreeSurfacePerturbation. h_ext = ExpressionFromOptions(path = (bc_path + "/type::flather/exterior_free_surface_perturbation"), t=0).get_expression() Ct_continuity += H*sqrt(g_magnitude/H)*(h_mid - Function(self.W.sub(1)).interpolate(h_ext))*v*ds(int(marker)) weak_bc_expressions.append(u_ext) weak_bc_expressions.append(h_ext) elif(bc_type == "weak_dirichlet"): u_bdy = ExpressionFromOptions(path = (bc_path + "/type::dirichlet"), t=0).get_expression() Ct_continuity += H*(dot(Function(self.W.sub(0)).interpolate(u_bdy), n))*v*ds(int(marker)) weak_bc_expressions.append(u_bdy) elif(bc_type == "dirichlet"): # Add in the surface integral as it is here. The BC will be applied strongly later using a DirichletBC object. Ct_continuity += H * inner(u_mid, n) * v * ds(int(marker)) elif(bc_type == "no_normal_flow"): # Do nothing here since dot(u, n) is zero. continue else: raise ValueError("Unknown boundary condition type!") except ValueError as e: LOG.exception(e) sys.exit() # If no boundary condition has been applied, include the surface integral as it is. if(bc_type is None): Ct_continuity += H * inner(u_mid, n) * v * ds(int(marker)) else: Ct_continuity = inner(v, div(H*u_mid))*dx F += Ct_continuity # Add in any source terms if(self.options["have_momentum_source"]): LOG.debug("Momentum equation: Adding source term...") momentum_source_expression = ExpressionFromOptions(path = "/system/equations/momentum_equation/source_term/vector_field::Source/value", t=0).get_expression() momentum_source_function = Function(self.W.sub(0), annotate=False) F -= inner(w, momentum_source_function.interpolate(momentum_source_expression))*dx if(self.options["have_continuity_source"]): LOG.debug("Continuity equation: Adding source term...") continuity_source_expression = ExpressionFromOptions(path = "/system/equations/continuity_equation/source_term/scalar_field::Source/value", t=0).get_expression() continuity_source_function = Function(self.W.sub(1), annotate=False) F -= inner(v, continuity_source_function.interpolate(continuity_source_expression))*dx # Add in any SU stabilisation if(self.options["have_su_stabilisation"]): LOG.debug("Momentum equation: Adding streamline-upwind stabilisation term...") stabilisation = Stabilisation(self.mesh, P1, cellsize) magnitude = magnitude_vector(solution_old.split()[0], P1) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array([1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) diffusivity = ExpressionFromOptions(path = "/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value", t=self.options["t"]).get_expression() diffusivity = Function(self.W.sub(1)).interpolate(diffusivity) # Background viscosity grid_pe = grid_peclet_number(diffusivity, magnitude, P1, cellsize) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array([1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local(numpy.maximum(grid_pe_nodes.array(), values)) F += stabilisation.streamline_upwind(w, u, magnitude, grid_pe) LOG.info("Form construction complete.") bcs, bc_expressions = self.get_dirichlet_boundary_conditions() # Prepare solver_parameters dictionary solver_parameters = self.get_solver_parameters() # Construct the solver objects problem = NonlinearVariationalProblem(F, solution, bcs=bcs) solver = NonlinearVariationalSolver(problem, solver_parameters=solver_parameters) LOG.debug("Variational problem solver created.") # PETSc solver run-times from petsc4py import PETSc main_solver_stage = PETSc.Log.Stage('Main block-coupled system solve') total_solver_time = 0.0 # Time-stepping parameters and constants T = self.options["T"] t = self.options["t"] t += dt iterations_since_dump = 1 iterations_since_checkpoint = 1 # The time-stepping loop LOG.info("Entering the time-stepping loop...") #if annotate: adj_start_timestep(time=t) EPSILON = 1.0e-14 while t <= T + EPSILON: # A small value EPSILON is added here in case of round-off error. LOG.info("t = %g" % t) ## Update any time-dependent Functions and Expressions. # Re-compute the velocity magnitude and grid Peclet number fields. if(self.options["have_su_stabilisation"]): magnitude.assign(magnitude_vector(solution_old.split()[0], P1)) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array([1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) grid_pe.assign(grid_peclet_number(diffusivity, magnitude, P1, cellsize)) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array([1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local(numpy.maximum(grid_pe_nodes.array(), values)) if(self.options["have_turbulence_parameterisation"]): les.solve() # Time-dependent source terms if(self.options["have_momentum_source"]): momentum_source_expression.t = t momentum_source_function.interpolate(momentum_source_expression) if(self.options["have_continuity_source"]): continuity_source_expression.t = t continuity_source_function.interpolate(continuity_source_expression) # Update any time-varying DirichletBC objects. for expr in bc_expressions: expr.t = t for expr in weak_bc_expressions: expr.t = t # Solve the system of equations! start_solver_time = mpi4py.MPI.Wtime() main_solver_stage.push() LOG.debug("Solving the system of equations...") solver.solve(annotate=annotate) main_solver_stage.pop() end_solver_time = mpi4py.MPI.Wtime() total_solver_time += (end_solver_time - start_solver_time) # Write the solution to file. if((self.options["dump_period"] is not None) and (dt*iterations_since_dump >= self.options["dump_period"])): LOG.debug("Writing data to file...") self.output_functions["Velocity"].assign(solution.split()[0], annotate=False) self.output_files["Velocity"] << self.output_functions["Velocity"] self.output_functions["FreeSurfacePerturbation"].assign(solution.split()[1], annotate=False) self.output_files["FreeSurfacePerturbation"] << self.output_functions["FreeSurfacePerturbation"] iterations_since_dump = 0 # Reset the counter. # Print out the total power generated by turbines. if(array): LOG.info("Power = %.2f" % array.power(u, density=1000)) # Checkpointing if((self.options["checkpoint_period"] is not None) and (dt*iterations_since_checkpoint >= self.options["checkpoint_period"])): LOG.debug("Writing checkpoint data to file...") solution.dat.save("checkpoint") iterations_since_checkpoint = 0 # Reset the counter. # Check whether a steady-state has been reached. if(steady_state(solution.split()[0], solution_old.split()[0], self.options["steady_state_tolerance"]) and steady_state(solution.split()[1], solution_old.split()[1], self.options["steady_state_tolerance"])): LOG.info("Steady-state attained. Exiting the time-stepping loop...") break self.compute_diagnostics() # Move to next time step solution_old.assign(solution, annotate=annotate) #array.turbine_drag.assign(project(array.turbine_drag, array.turbine_drag.function_space(), annotate=annotate), annotate=annotate) t += dt #if annotate: adj_inc_timestep(time=t, finished=t>T) iterations_since_dump += 1 iterations_since_checkpoint += 1 LOG.debug("Moving to next time level...") LOG.info("Out of the time-stepping loop.") LOG.debug("Total solver time: %.2f" % (total_solver_time)) return solution
def run(self): """ Perform the simulation! """ # Time-stepping parameters and constants LOG.info("Setting up a few constants...") T = self.options["T"] t = self.options["t"] theta = self.options["theta"] dt = self.options["dt"] dimension = self.options["dimension"] g_magnitude = self.options["g_magnitude"] # Get the function spaces U = self.function_spaces["VelocityFunctionSpace"] H = self.function_spaces["FreeSurfaceFunctionSpace"] # Is the Velocity field represented by a discontinous function space? dg = (U.ufl_element().family() == "Discontinuous Lagrange") # Weight u and h by theta to obtain the theta time-stepping scheme. assert(theta >= 0.0 and theta <= 1.0) LOG.info("Time-stepping scheme using theta = %g" % (theta)) u_mid = (1.0 - theta) * self.u0 + theta * self.u h_mid = (1.0 - theta) * self.h0 + theta * self.h # The total height of the free surface. self.h_total = self.h_mean + self.h0 # Non-linear approximation to the velocity u_nl = Function(U).assign(self.u0) # Second-order Adams-Bashforth velocity u_bash = (3.0/2.0)*self.u0 - (1.0/2.0)*self.u00 # Simple P1 function space, to be used in the stabilisation routines (if applicable). P1 = FunctionSpace(self.mesh, "CG", 1) cellsize = CellSize(self.mesh) ########################################################### ################# Tentative velocity step ################# ########################################################### # The collection of all the individual terms in their weak form. LOG.info("Constructing form...") F = 0 # Mass term if(self.options["have_momentum_mass"]): LOG.debug("Momentum equation: Adding mass term...") M_momentum = (1.0/dt)*(inner(self.w, self.u) - inner(self.w, self.u0))*dx F += M_momentum # Append any Expression objects for weak BCs here. weak_bc_expressions = [] # Advection term if(self.options["have_momentum_advection"]): LOG.debug("Momentum equation: Adding advection term...") if(self.options["integrate_advection_term_by_parts"]): outflow = (dot(self.u0, self.n) + abs(dot(self.u0, self.n)))/2.0 A_momentum = -inner(dot(u_nl, grad(self.w)), u_bash)*dx - inner(dot(u_bash, grad(u_nl)), self.w)*dx A_momentum += inner(self.w, outflow*u_mid)*ds if(dg): # Only add interior facet integrals if we are dealing with a discontinous Galerkin discretisation. A_momentum += dot(outflow('+')*u_mid('+') - outflow('-')*u_mid('-'), jump(self.w))*dS else: A_momentum = inner(dot(grad(self.u), u_nl), self.w)*dx F += A_momentum # Viscous stress term. Note that the viscosity is kinematic (not dynamic). if(self.options["have_momentum_stress"]): LOG.debug("Momentum equation: Adding stress term...") viscosity = Function(H) # Background viscosity background_viscosity = Function(H).interpolate(Expression(libspud.get_option("/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value/constant"))) viscosity.assign(background_viscosity) # Eddy viscosity if(self.options["have_turbulence_parameterisation"]): LOG.debug("Momentum equation: Adding turbulence parameterisation...") base_option_path = "/system/equations/momentum_equation/turbulence_parameterisation" # Large eddy simulation (LES) if(libspud.have_option(base_option_path + "/les")): les = LES(self.mesh, H) density = Constant(1.0) # We divide through by density in the momentum equation, so just set this to 1.0 for now. smagorinsky_coefficient = Constant(libspud.get_option(base_option_path + "/les/smagorinsky/smagorinsky_coefficient")) eddy_viscosity = Function(H) eddy_viscosity_lhs, eddy_viscosity_rhs = les.eddy_viscosity(u_mid, density, smagorinsky_coefficient) eddy_viscosity_problem = LinearVariationalProblem(eddy_viscosity_lhs, eddy_viscosity_rhs, eddy_viscosity, bcs=[]) eddy_viscosity_solver = LinearVariationalSolver(eddy_viscosity_problem) # Add on eddy viscosity viscosity += eddy_viscosity # Stress tensor: tau = grad(u) + transpose(grad(u)) - (2/3)*div(u) if(not dg): # Perform a double dot product of the stress tensor and grad(w). K_momentum = -viscosity*inner(grad(self.u) + grad(self.u).T, grad(self.w))*dx #K_momentum += viscosity*(2.0/3.0)*inner(div(self.u)*Identity(dimension), grad(self.w))*dx else: # Interior penalty method cellsize = Constant(0.2) # In general, we should use CellSize(self.mesh) instead. alpha = 1/cellsize # Penalty parameter. K_momentum = -viscosity('+')*inner(grad(u_mid), grad(self.w))*dx for dim in range(self.options["dimension"]): K_momentum += -viscosity('+')*(alpha('+')/cellsize('+'))*dot(jump(self.w[dim], self.n), jump(u_mid[dim], self.n))*dS K_momentum += viscosity('+')*dot(avg(grad(self.w[dim])), jump(u_mid[dim], self.n))*dS + viscosity('+')*dot(jump(self.w[dim], self.n), avg(grad(u_mid[dim])))*dS F -= K_momentum # Negative sign here because we are bringing the stress term over from the RHS. # The gradient of the height of the free surface, h LOG.debug("Momentum equation: Adding gradient term...") C_momentum = -g_magnitude*inner(self.w, grad(self.h0))*dx F -= C_momentum # Quadratic drag term in the momentum equation if(self.options["have_drag"]): LOG.debug("Momentum equation: Adding drag term...") base_option_path = "/system/equations/momentum_equation/drag_term" # Get the bottom drag/friction coefficient. LOG.debug("Momentum equation: Adding bottom drag contribution...") bottom_drag = ExpressionFromOptions(path=base_option_path+"/scalar_field::BottomDragCoefficient/value", t=t).get_expression() bottom_drag = Function(H).interpolate(bottom_drag) # Add on the turbine drag, if provided. self.array = None # Magnitude of the velocity field magnitude = sqrt(dot(self.u0, self.u0)) # Form the drag term array = sw.get_turbine_array() if(array): LOG.debug("Momentum equation: Adding turbine drag contribution...") drag_coefficient = bottom_drag + array.turbine_drag() else: drag_coefficient = bottom_drag D_momentum = -inner(self.w, (drag_coefficient*magnitude/self.h_total)*self.u)*dx F -= D_momentum # Add in any source terms if(self.options["have_momentum_source"]): LOG.debug("Momentum equation: Adding source term...") momentum_source_expression = ExpressionFromOptions(path = "/system/equations/momentum_equation/source_term/vector_field::Source/value", t=t).get_expression() momentum_source_function = Function(U) F -= inner(self.w, momentum_source_function.interpolate(momentum_source_expression))*dx # Add in any SU stabilisation if(self.options["have_su_stabilisation"]): LOG.debug("Momentum equation: Adding streamline-upwind stabilisation term...") stabilisation = Stabilisation(self.mesh, P1, cellsize) magnitude = magnitude_vector(self.u0, P1) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array([1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) diffusivity = ExpressionFromOptions(path = "/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value", t=self.options["t"]).get_expression() diffusivity = Function(H).interpolate(diffusivity) # Background viscosity grid_pe = grid_peclet_number(diffusivity, magnitude, P1, cellsize) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array([1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local(numpy.maximum(grid_pe_nodes.array(), values)) F += stabilisation.streamline_upwind(self.w, self.u0, magnitude, grid_pe) LOG.info("Form construction complete.") ########################################################## ################ Pressure correction step ################ ########################################################## u_tent = Function(U) u_tent_nl = theta*u_tent + (1.0-theta)*self.u0 F_h_corr = inner(self.v, (self.h - self.h0))*dx \ + g_magnitude*(dt**2)*(theta**2)*self.h_total*inner(grad(self.v), grad(self.h - self.h0))*dx \ + dt*self.v*div(self.h_total*u_tent_nl)*dx ########################################################## ################ Velocity correction step ################ ########################################################## h1 = Function(H) u1 = Function(U) F_u_corr = (1.0/dt)*inner(self.w, self.u - u_tent)*dx + g_magnitude*theta*inner(self.w, grad(h1 - self.h0))*dx LOG.info("Applying strong Dirichlet boundary conditions...") # Get all the Dirichlet boundary conditions for the Velocity field bcs_u = []; bcs_u2 = [] bcs_h = [] bc_expressions = [] for i in range(0, libspud.option_count("/system/core_fields/vector_field::Velocity/boundary_condition")): if(libspud.have_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i) and not libspud.have_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet/apply_weakly" % i)): expr = ExpressionFromOptions(path = ("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(U, expr, surface_ids, method=method) bcs_u.append(bc) bc_expressions.append(expr) LOG.debug("Applying Velocity BC #%d strongly to surface IDs: %s" % (i, surface_ids)) for i in range(0, libspud.option_count("/system/core_fields/vector_field::Velocity/boundary_condition")): if(libspud.have_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i) and not libspud.have_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet/apply_weakly" % i)): expr = ExpressionFromOptions(path = ("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option("/system/core_fields/vector_field::Velocity/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(U, expr, surface_ids, method=method) bcs_u2.append(bc) bc_expressions.append(expr) LOG.debug("Applying Velocity BC #%d strongly to surface IDs: %s" % (i, surface_ids)) for i in range(0, libspud.option_count("/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition/type::dirichlet")): if(libspud.have_option("/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet" % i) and not(libspud.have_option("/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet/apply_weakly" % i))): expr = ExpressionFromOptions(path = ("/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option("/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(H, expr, surface_ids, method=method) bcs_h.append(bc) bc_expressions.append(expr) LOG.debug("Applying FreeSurfacePerturbation BC #%d strongly to surface IDs: %s" % (i, surface_ids)) # Prepare solver_parameters dictionary LOG.debug("Defining solver_parameters dictionary...") solver_parameters = {'ksp_monitor': True, 'ksp_view': False, 'pc_view': False, 'snes_type': 'ksponly', 'ksp_max_it':10000} # NOTE: use 'snes_type': 'newtonls' for production runs. # KSP (iterative solver) options solver_parameters["ksp_type"] = libspud.get_option("/system/solver/iterative_method/name") solver_parameters["ksp_rtol"] = libspud.get_option("/system/solver/relative_error") solver_parameters['ksp_converged_reason'] = True solver_parameters['ksp_monitor_true_residual'] = True # Preconditioner options solver_parameters["pc_type"] = libspud.get_option("/system/solver/preconditioner/name") # Fieldsplit sub-options if(solver_parameters["pc_type"] == "fieldsplit"): LOG.debug("Setting up the fieldsplit preconditioner...") solver_parameters["pc_fieldsplit_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/type/name") if(solver_parameters["pc_fieldsplit_type"] == "schur"): solver_parameters["pc_fieldsplit_schur_fact_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/type::schur/fact_type/name") solver_parameters["fieldsplit_0_ksp_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/block_0_ksp_type/iterative_method/name") solver_parameters["fieldsplit_1_ksp_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/block_1_ksp_type/iterative_method/name") if(libspud.get_option("/system/solver/preconditioner::fieldsplit/block_0_pc_type/preconditioner/name") != "ilu"): solver_parameters["fieldsplit_0_pc_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/block_0_pc_type/preconditioner/name") solver_parameters["fieldsplit_1_pc_type"] = libspud.get_option("/system/solver/preconditioner::fieldsplit/block_1_pc_type/preconditioner/name") # Enable inner iteration monitors. solver_parameters["fieldsplit_0_ksp_monitor"] = True solver_parameters["fieldsplit_1_ksp_monitor"] = True solver_parameters["fieldsplit_0_pc_factor_shift_type"] = 'INBLOCKS' solver_parameters["fieldsplit_1_pc_factor_shift_type"] = 'INBLOCKS' # Construct the solver objects problem_tent = LinearVariationalProblem(lhs(F), rhs(F), u_tent, bcs=bcs_u) solver_tent = LinearVariationalSolver(problem_tent, solver_parameters={'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7}) problem_h_corr = LinearVariationalProblem(lhs(F_h_corr), rhs(F_h_corr), h1, bcs=bcs_h) solver_h_corr = LinearVariationalSolver(problem_h_corr, solver_parameters={'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7}) problem_u_corr = LinearVariationalProblem(lhs(F_u_corr), rhs(F_u_corr), u1, bcs=bcs_u2) solver_u_corr = LinearVariationalSolver(problem_u_corr, solver_parameters={'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7}) t += dt iterations_since_dump = 1 iterations_since_checkpoint = 1 # PETSc solver run-times from petsc4py import PETSc main_solver_stage = PETSc.Log.Stage('Main block-coupled system solve') total_solver_time = 0.0 # The time-stepping loop LOG.info("Entering the time-stepping loop...") EPSILON = 1.0e-14 while t <= T + EPSILON: # A small value EPSILON is added here in case of round-off error. LOG.info("t = %g" % t) while True: ## Update any time-dependent Functions and Expressions. # Re-compute the velocity magnitude and grid Peclet number fields. if(self.options["have_su_stabilisation"]): magnitude.assign(magnitude_vector(self.u0, P1)) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array([1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) grid_pe.assign(grid_peclet_number(diffusivity, magnitude, P1, cellsize)) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array([1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local(numpy.maximum(grid_pe_nodes.array(), values)) if(self.options["have_turbulence_parameterisation"]): eddy_viscosity_solver.solve() viscosity.assign(background_viscosity + eddy_viscosity) # Time-dependent source terms if(self.options["have_momentum_source"]): momentum_source_expression.t = t momentum_source_function.interpolate(momentum_source_expression) if(self.options["have_continuity_source"]): continuity_source_expression.t = t continuity_source_function.interpolate(continuity_source_expression) # Update any time-varying DirichletBC objects. for expr in bc_expressions: expr.t = t for expr in weak_bc_expressions: expr.t = t # Solve the system of equations! start_solver_time = mpi4py.MPI.Wtime() main_solver_stage.push() LOG.debug("Solving the system of equations...") solver_tent.solve() solver_h_corr.solve() solver_u_corr.solve() main_solver_stage.pop() end_solver_time = mpi4py.MPI.Wtime() total_solver_time += (end_solver_time - start_solver_time) # Move to next time step if(steady_state(u1, u_nl, 1e-7)): break u_nl.assign(u1) self.u00.assign(self.u0) self.u0.assign(u1) self.h0.assign(h1) t += dt iterations_since_dump += 1 iterations_since_checkpoint += 1 LOG.debug("Moving to next time level...") # Write the solution to file. if((self.options["dump_period"] is not None) and (dt*iterations_since_dump >= self.options["dump_period"])): LOG.debug("Writing data to file...") self.output_functions["Velocity"].assign(u1) self.output_files["Velocity"] << self.output_functions["Velocity"] self.output_functions["FreeSurfacePerturbation"].assign(h1) self.output_files["FreeSurfacePerturbation"] << self.output_functions["FreeSurfacePerturbation"] iterations_since_dump = 0 # Reset the counter. # Print out the total power generated by turbines. if(self.options["have_drag"] and self.array is not None): LOG.info("Power = %.2f" % self.array.power(u1, density=1000)) # Checkpointing if((self.options["checkpoint_period"] is not None) and (dt*iterations_since_checkpoint >= self.options["checkpoint_period"])): LOG.debug("Writing checkpoint data to file...") self.solution.dat.save("checkpoint") iterations_since_checkpoint = 0 # Reset the counter. # Check whether a steady-state has been reached. if(steady_state(u1, self.u0, self.options["steady_state_tolerance"]) and steady_state(h1, self.h0, self.options["steady_state_tolerance"])): LOG.info("Steady-state attained. Exiting the time-stepping loop...") break self.compute_diagnostics() LOG.info("Out of the time-stepping loop.") LOG.debug("Total solver time: %.2f" % (total_solver_time)) return u1, h1
def run(self): """ Perform the simulation! """ # Time-stepping parameters and constants LOG.info("Setting up a few constants...") T = self.options["T"] t = self.options["t"] theta = self.options["theta"] dt = self.options["dt"] dimension = self.options["dimension"] g_magnitude = self.options["g_magnitude"] # Get the function spaces U = self.function_spaces["VelocityFunctionSpace"] H = self.function_spaces["FreeSurfaceFunctionSpace"] # Is the Velocity field represented by a discontinous function space? dg = (U.ufl_element().family() == "Discontinuous Lagrange") # Weight u and h by theta to obtain the theta time-stepping scheme. assert (theta >= 0.0 and theta <= 1.0) LOG.info("Time-stepping scheme using theta = %g" % (theta)) u_mid = (1.0 - theta) * self.u0 + theta * self.u h_mid = (1.0 - theta) * self.h0 + theta * self.h # The total height of the free surface. self.h_total = self.h_mean + self.h0 # Non-linear approximation to the velocity u_nl = Function(U).assign(self.u0) # Second-order Adams-Bashforth velocity u_bash = (3.0 / 2.0) * self.u0 - (1.0 / 2.0) * self.u00 # Simple P1 function space, to be used in the stabilisation routines (if applicable). P1 = FunctionSpace(self.mesh, "CG", 1) cellsize = CellSize(self.mesh) ########################################################### ################# Tentative velocity step ################# ########################################################### # The collection of all the individual terms in their weak form. LOG.info("Constructing form...") F = 0 # Mass term if (self.options["have_momentum_mass"]): LOG.debug("Momentum equation: Adding mass term...") M_momentum = (1.0 / dt) * (inner(self.w, self.u) - inner(self.w, self.u0)) * dx F += M_momentum # Append any Expression objects for weak BCs here. weak_bc_expressions = [] # Advection term if (self.options["have_momentum_advection"]): LOG.debug("Momentum equation: Adding advection term...") if (self.options["integrate_advection_term_by_parts"]): outflow = (dot(self.u0, self.n) + abs(dot(self.u0, self.n))) / 2.0 A_momentum = -inner(dot(u_nl, grad(self.w)), u_bash) * dx - inner( dot(u_bash, grad(u_nl)), self.w) * dx A_momentum += inner(self.w, outflow * u_mid) * ds if (dg): # Only add interior facet integrals if we are dealing with a discontinous Galerkin discretisation. A_momentum += dot( outflow('+') * u_mid('+') - outflow('-') * u_mid('-'), jump(self.w)) * dS else: A_momentum = inner(dot(grad(self.u), u_nl), self.w) * dx F += A_momentum # Viscous stress term. Note that the viscosity is kinematic (not dynamic). if (self.options["have_momentum_stress"]): LOG.debug("Momentum equation: Adding stress term...") viscosity = Function(H) # Background viscosity background_viscosity = Function(H).interpolate( Expression( libspud.get_option( "/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value/constant" ))) viscosity.assign(background_viscosity) # Eddy viscosity if (self.options["have_turbulence_parameterisation"]): LOG.debug( "Momentum equation: Adding turbulence parameterisation...") base_option_path = "/system/equations/momentum_equation/turbulence_parameterisation" # Large eddy simulation (LES) if (libspud.have_option(base_option_path + "/les")): les = LES(self.mesh, H) density = Constant( 1.0 ) # We divide through by density in the momentum equation, so just set this to 1.0 for now. smagorinsky_coefficient = Constant( libspud.get_option( base_option_path + "/les/smagorinsky/smagorinsky_coefficient")) eddy_viscosity = Function(H) eddy_viscosity_lhs, eddy_viscosity_rhs = les.eddy_viscosity( u_mid, density, smagorinsky_coefficient) eddy_viscosity_problem = LinearVariationalProblem( eddy_viscosity_lhs, eddy_viscosity_rhs, eddy_viscosity, bcs=[]) eddy_viscosity_solver = LinearVariationalSolver( eddy_viscosity_problem) # Add on eddy viscosity viscosity += eddy_viscosity # Stress tensor: tau = grad(u) + transpose(grad(u)) - (2/3)*div(u) if (not dg): # Perform a double dot product of the stress tensor and grad(w). K_momentum = -viscosity * inner( grad(self.u) + grad(self.u).T, grad(self.w)) * dx #K_momentum += viscosity*(2.0/3.0)*inner(div(self.u)*Identity(dimension), grad(self.w))*dx else: # Interior penalty method cellsize = Constant( 0.2 ) # In general, we should use CellSize(self.mesh) instead. alpha = 1 / cellsize # Penalty parameter. K_momentum = -viscosity('+') * inner(grad(u_mid), grad( self.w)) * dx for dim in range(self.options["dimension"]): K_momentum += -viscosity('+') * ( alpha('+') / cellsize('+')) * dot( jump(self.w[dim], self.n), jump( u_mid[dim], self.n)) * dS K_momentum += viscosity('+') * dot( avg(grad(self.w[dim])), jump(u_mid[dim], self.n) ) * dS + viscosity('+') * dot(jump(self.w[dim], self.n), avg(grad(u_mid[dim]))) * dS F -= K_momentum # Negative sign here because we are bringing the stress term over from the RHS. # The gradient of the height of the free surface, h LOG.debug("Momentum equation: Adding gradient term...") C_momentum = -g_magnitude * inner(self.w, grad(self.h0)) * dx F -= C_momentum # Quadratic drag term in the momentum equation if (self.options["have_drag"]): LOG.debug("Momentum equation: Adding drag term...") base_option_path = "/system/equations/momentum_equation/drag_term" # Get the bottom drag/friction coefficient. LOG.debug("Momentum equation: Adding bottom drag contribution...") bottom_drag = ExpressionFromOptions( path=base_option_path + "/scalar_field::BottomDragCoefficient/value", t=t).get_expression() bottom_drag = Function(H).interpolate(bottom_drag) # Add on the turbine drag, if provided. self.array = None # Magnitude of the velocity field magnitude = sqrt(dot(self.u0, self.u0)) # Form the drag term array = sw.get_turbine_array() if (array): LOG.debug( "Momentum equation: Adding turbine drag contribution...") drag_coefficient = bottom_drag + array.turbine_drag() else: drag_coefficient = bottom_drag D_momentum = -inner( self.w, (drag_coefficient * magnitude / self.h_total) * self.u) * dx F -= D_momentum # Add in any source terms if (self.options["have_momentum_source"]): LOG.debug("Momentum equation: Adding source term...") momentum_source_expression = ExpressionFromOptions( path= "/system/equations/momentum_equation/source_term/vector_field::Source/value", t=t).get_expression() momentum_source_function = Function(U) F -= inner( self.w, momentum_source_function.interpolate( momentum_source_expression)) * dx # Add in any SU stabilisation if (self.options["have_su_stabilisation"]): LOG.debug( "Momentum equation: Adding streamline-upwind stabilisation term..." ) stabilisation = Stabilisation(self.mesh, P1, cellsize) magnitude = magnitude_vector(self.u0, P1) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array([1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) diffusivity = ExpressionFromOptions( path= "/system/equations/momentum_equation/stress_term/scalar_field::Viscosity/value", t=self.options["t"]).get_expression() diffusivity = Function(H).interpolate( diffusivity) # Background viscosity grid_pe = grid_peclet_number(diffusivity, magnitude, P1, cellsize) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array([1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local( numpy.maximum(grid_pe_nodes.array(), values)) F += stabilisation.streamline_upwind(self.w, self.u0, magnitude, grid_pe) LOG.info("Form construction complete.") ########################################################## ################ Pressure correction step ################ ########################################################## u_tent = Function(U) u_tent_nl = theta * u_tent + (1.0 - theta) * self.u0 F_h_corr = inner(self.v, (self.h - self.h0))*dx \ + g_magnitude*(dt**2)*(theta**2)*self.h_total*inner(grad(self.v), grad(self.h - self.h0))*dx \ + dt*self.v*div(self.h_total*u_tent_nl)*dx ########################################################## ################ Velocity correction step ################ ########################################################## h1 = Function(H) u1 = Function(U) F_u_corr = (1.0 / dt) * inner( self.w, self.u - u_tent) * dx + g_magnitude * theta * inner( self.w, grad(h1 - self.h0)) * dx LOG.info("Applying strong Dirichlet boundary conditions...") # Get all the Dirichlet boundary conditions for the Velocity field bcs_u = [] bcs_u2 = [] bcs_h = [] bc_expressions = [] for i in range( 0, libspud.option_count( "/system/core_fields/vector_field::Velocity/boundary_condition" )): if (libspud.have_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i ) and not libspud.have_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet/apply_weakly" % i)): expr = ExpressionFromOptions(path=( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(U, expr, surface_ids, method=method) bcs_u.append(bc) bc_expressions.append(expr) LOG.debug( "Applying Velocity BC #%d strongly to surface IDs: %s" % (i, surface_ids)) for i in range( 0, libspud.option_count( "/system/core_fields/vector_field::Velocity/boundary_condition" )): if (libspud.have_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i ) and not libspud.have_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet/apply_weakly" % i)): expr = ExpressionFromOptions(path=( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option( "/system/core_fields/vector_field::Velocity/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(U, expr, surface_ids, method=method) bcs_u2.append(bc) bc_expressions.append(expr) LOG.debug( "Applying Velocity BC #%d strongly to surface IDs: %s" % (i, surface_ids)) for i in range( 0, libspud.option_count( "/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition/type::dirichlet" )): if (libspud.have_option( "/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet" % i ) and not (libspud.have_option( "/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet/apply_weakly" % i))): expr = ExpressionFromOptions(path=( "/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/type::dirichlet" % i), t=t).get_expression() # Surface IDs on the domain boundary surface_ids = libspud.get_option( "/system/core_fields/scalar_field::FreeSurfacePerturbation/boundary_condition[%d]/surface_ids" % i) method = ("geometric" if dg else "topological") bc = DirichletBC(H, expr, surface_ids, method=method) bcs_h.append(bc) bc_expressions.append(expr) LOG.debug( "Applying FreeSurfacePerturbation BC #%d strongly to surface IDs: %s" % (i, surface_ids)) # Prepare solver_parameters dictionary LOG.debug("Defining solver_parameters dictionary...") solver_parameters = { 'ksp_monitor': True, 'ksp_view': False, 'pc_view': False, 'snes_type': 'ksponly', 'ksp_max_it': 10000 } # NOTE: use 'snes_type': 'newtonls' for production runs. # KSP (iterative solver) options solver_parameters["ksp_type"] = libspud.get_option( "/system/solver/iterative_method/name") solver_parameters["ksp_rtol"] = libspud.get_option( "/system/solver/relative_error") solver_parameters['ksp_converged_reason'] = True solver_parameters['ksp_monitor_true_residual'] = True # Preconditioner options solver_parameters["pc_type"] = libspud.get_option( "/system/solver/preconditioner/name") # Fieldsplit sub-options if (solver_parameters["pc_type"] == "fieldsplit"): LOG.debug("Setting up the fieldsplit preconditioner...") solver_parameters["pc_fieldsplit_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/type/name") if (solver_parameters["pc_fieldsplit_type"] == "schur"): solver_parameters[ "pc_fieldsplit_schur_fact_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/type::schur/fact_type/name" ) solver_parameters["fieldsplit_0_ksp_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/block_0_ksp_type/iterative_method/name" ) solver_parameters["fieldsplit_1_ksp_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/block_1_ksp_type/iterative_method/name" ) if (libspud.get_option( "/system/solver/preconditioner::fieldsplit/block_0_pc_type/preconditioner/name" ) != "ilu"): solver_parameters["fieldsplit_0_pc_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/block_0_pc_type/preconditioner/name" ) solver_parameters["fieldsplit_1_pc_type"] = libspud.get_option( "/system/solver/preconditioner::fieldsplit/block_1_pc_type/preconditioner/name" ) # Enable inner iteration monitors. solver_parameters["fieldsplit_0_ksp_monitor"] = True solver_parameters["fieldsplit_1_ksp_monitor"] = True solver_parameters["fieldsplit_0_pc_factor_shift_type"] = 'INBLOCKS' solver_parameters["fieldsplit_1_pc_factor_shift_type"] = 'INBLOCKS' # Construct the solver objects problem_tent = LinearVariationalProblem(lhs(F), rhs(F), u_tent, bcs=bcs_u) solver_tent = LinearVariationalSolver(problem_tent, solver_parameters={ 'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7 }) problem_h_corr = LinearVariationalProblem(lhs(F_h_corr), rhs(F_h_corr), h1, bcs=bcs_h) solver_h_corr = LinearVariationalSolver(problem_h_corr, solver_parameters={ 'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7 }) problem_u_corr = LinearVariationalProblem(lhs(F_u_corr), rhs(F_u_corr), u1, bcs=bcs_u2) solver_u_corr = LinearVariationalSolver(problem_u_corr, solver_parameters={ 'ksp_monitor': False, 'ksp_view': False, 'pc_view': False, 'pc_type': 'sor', 'ksp_type': 'gmres', 'ksp_rtol': 1.0e-7 }) t += dt iterations_since_dump = 1 iterations_since_checkpoint = 1 # PETSc solver run-times from petsc4py import PETSc main_solver_stage = PETSc.Log.Stage('Main block-coupled system solve') total_solver_time = 0.0 # The time-stepping loop LOG.info("Entering the time-stepping loop...") EPSILON = 1.0e-14 while t <= T + EPSILON: # A small value EPSILON is added here in case of round-off error. LOG.info("t = %g" % t) while True: ## Update any time-dependent Functions and Expressions. # Re-compute the velocity magnitude and grid Peclet number fields. if (self.options["have_su_stabilisation"]): magnitude.assign(magnitude_vector(self.u0, P1)) # Bound the values for the magnitude below by 1.0e-9 for numerical stability reasons. u_nodes = magnitude.vector() near_zero = numpy.array( [1.0e-9 for i in range(len(u_nodes))]) u_nodes.set_local(numpy.maximum(u_nodes.array(), near_zero)) grid_pe.assign( grid_peclet_number(diffusivity, magnitude, P1, cellsize)) # Bound the values for grid_pe below by 1.0e-9 for numerical stability reasons. grid_pe_nodes = grid_pe.vector() values = numpy.array( [1.0e-9 for i in range(len(grid_pe_nodes))]) grid_pe_nodes.set_local( numpy.maximum(grid_pe_nodes.array(), values)) if (self.options["have_turbulence_parameterisation"]): eddy_viscosity_solver.solve() viscosity.assign(background_viscosity + eddy_viscosity) # Time-dependent source terms if (self.options["have_momentum_source"]): momentum_source_expression.t = t momentum_source_function.interpolate( momentum_source_expression) if (self.options["have_continuity_source"]): continuity_source_expression.t = t continuity_source_function.interpolate( continuity_source_expression) # Update any time-varying DirichletBC objects. for expr in bc_expressions: expr.t = t for expr in weak_bc_expressions: expr.t = t # Solve the system of equations! start_solver_time = mpi4py.MPI.Wtime() main_solver_stage.push() LOG.debug("Solving the system of equations...") solver_tent.solve() solver_h_corr.solve() solver_u_corr.solve() main_solver_stage.pop() end_solver_time = mpi4py.MPI.Wtime() total_solver_time += (end_solver_time - start_solver_time) # Move to next time step if (steady_state(u1, u_nl, 1e-7)): break u_nl.assign(u1) self.u00.assign(self.u0) self.u0.assign(u1) self.h0.assign(h1) t += dt iterations_since_dump += 1 iterations_since_checkpoint += 1 LOG.debug("Moving to next time level...") # Write the solution to file. if ((self.options["dump_period"] is not None) and (dt * iterations_since_dump >= self.options["dump_period"])): LOG.debug("Writing data to file...") self.output_functions["Velocity"].assign(u1) self.output_files["Velocity"] << self.output_functions[ "Velocity"] self.output_functions["FreeSurfacePerturbation"].assign(h1) self.output_files[ "FreeSurfacePerturbation"] << self.output_functions[ "FreeSurfacePerturbation"] iterations_since_dump = 0 # Reset the counter. # Print out the total power generated by turbines. if (self.options["have_drag"] and self.array is not None): LOG.info("Power = %.2f" % self.array.power(u1, density=1000)) # Checkpointing if ((self.options["checkpoint_period"] is not None) and (dt * iterations_since_checkpoint >= self.options["checkpoint_period"])): LOG.debug("Writing checkpoint data to file...") self.solution.dat.save("checkpoint") iterations_since_checkpoint = 0 # Reset the counter. # Check whether a steady-state has been reached. if (steady_state(u1, self.u0, self.options["steady_state_tolerance"]) and steady_state(h1, self.h0, self.options["steady_state_tolerance"])): LOG.info( "Steady-state attained. Exiting the time-stepping loop...") break self.compute_diagnostics() LOG.info("Out of the time-stepping loop.") LOG.debug("Total solver time: %.2f" % (total_solver_time)) return u1, h1