def test_equality_constraint(pytestconfig): mesh = fs.DiskMesh(0.05, radius=2.) Q = fs.FeControlSpace(mesh) inner = fs.ElasticityInnerProduct(Q, direct_solve=True) mesh_m = Q.mesh_m (x, y) = fd.SpatialCoordinate(mesh_m) q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) else: cb = None f = (pow(2 * x, 2)) + pow(y - 0.1, 2) - 1.2 J = fsz.LevelsetFunctional(f, Q, cb=cb) vol = fsz.LevelsetFunctional(fd.Constant(1.0), Q) e = fs.EqualityConstraint([vol]) emul = ROL.StdVector(1) params_dict = { 'Step': { 'Type': 'Augmented Lagrangian', 'Augmented Lagrangian': { 'Subproblem Step Type': 'Line Search', 'Penalty Parameter Growth Factor': 2., 'Initial Penalty Parameter': 1., 'Subproblem Iteration Limit': 20, }, 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } }, }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 5 } }, 'Status Test': { 'Gradient Tolerance': 1e-4, 'Step Tolerance': 1e-10, 'Iteration Limit': 10 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q, econ=e, emul=emul) solver = ROL.OptimizationSolver(problem, params) solver.solve() state = solver.getAlgorithmState() assert (state.gnorm < 1e-4) assert (state.cnorm < 1e-6)
n = 30 # mesh = fd.UnitSquareMesh(n, n) mesh = fd.Mesh("UnitSquareCrossed.msh") mesh = fd.MeshHierarchy(mesh, 1)[-1] Q = fs.FeMultiGridControlSpace(mesh, refinements=3, order=2) inner = fs.LaplaceInnerProduct(Q) mesh_m = Q.mesh_m V_m = fd.FunctionSpace(mesh_m, "CG", 1) f_m = fd.Function(V_m) (x, y) = fd.SpatialCoordinate(mesh_m) f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) - 2. out = fd.File("domain.pvd") J = fsz.LevelsetFunctional(f, Q, cb=lambda: out.write(mesh_m.coordinates)) q = fs.ControlVector(Q, inner) params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 5 } }, 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step'
inner = fs.ElasticityInnerProduct(Q, mu=mu_base, direct_solve=True) elif args.base_inner == "laplace": inner = fs.LaplaceInnerProduct(Q, mu=mu_base, direct_solve=True) else: raise NotImplementedError if args.alpha is not None: mu_cr = mu_base / args.alpha inner = CauchyRiemannAugmentation(mu_cr, inner) mesh_m = Q.mesh_m (x, y) = fd.SpatialCoordinate(mesh_m) r = fd.sqrt(x**2 + y**2) expr = (r - fd.Constant(rs)) * (r - fd.Constant(Rs)) J = 0.1 * fsz.LevelsetFunctional(expr, Q, quadrature_degree=5) q = fs.ControlVector(Q, inner) params_dict = { "General": { "Secant": { "Type": "Limited-Memory BFGS", "Maximum Storage": 1 } }, "Step": { "Type": "Line Search", "Line Search": { "Descent Method": { "Type": "Quasi-Newton Step" }
def test_levelset(dim, inner_t, controlspace_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for fsz.LevelsetFunctional.""" clscale = 0.1 if dim == 2 else 0.2 # make the mesh a bit coarser if we are using a multigrid control space as # we are refining anyway if controlspace_t == fs.FeMultiGridControlSpace: clscale *= 4 if dim == 2: mesh = fs.DiskMesh(clscale) elif dim == 3: mesh = fs.SphereMesh(clscale) else: raise NotImplementedError if controlspace_t == fs.BsplineControlSpace: if dim == 2: bbox = [(-2, 2), (-2, 2)] orders = [2, 2] levels = [4, 4] else: bbox = [(-3, 3), (-3, 3), (-3, 3)] orders = [2, 2, 2] levels = [3, 3, 3] Q = fs.BsplineControlSpace(mesh, bbox, orders, levels) elif controlspace_t == fs.FeMultiGridControlSpace: Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2) else: Q = controlspace_t(mesh) inner = inner_t(Q) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) cb() else: cb = None # levelset test case if dim == 2: (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(1.3 * y, 2) - 1. elif dim == 3: (x, y, z) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(0.8 * y, 2) + pow(1.3 * z, 2) - 1. else: raise NotImplementedError J = fsz.LevelsetFunctional(f, Q, cb=cb, scale=0.1) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) # these tolerances are not very stringent, but solutions are correct with # tighter tolerances, the combination # FeMultiGridControlSpace-ElasticityInnerProduct fails because the mesh # self-intersects (one should probably be more careful with the opt params) grad_tol = 1e-1 itlim = 15 itlimsub = 15 # Volume constraint vol = fsz.LevelsetFunctional(fd.Constant(1.0), Q, scale=1) initial_vol = vol.value(q, None) econ = fs.EqualityConstraint([vol], target_value=[initial_vol]) emul = ROL.StdVector(1) # ROL parameters params_dict = { 'Step': { 'Type': 'Augmented Lagrangian', 'Augmented Lagrangian': { 'Subproblem Step Type': 'Line Search', 'Penalty Parameter Growth Factor': 1.05, 'Print Intermediate Optimization History': True, 'Subproblem Iteration Limit': itlimsub }, 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } }, }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 50 } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': itlim } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q, econ=econ, emul=emul) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough # and that the volume has not changed too much state = solver.getAlgorithmState() assert (state.gnorm < grad_tol) assert abs(vol.value(q, None) - initial_vol) < 1e-2
if args.spectral: Js = fsz.MoYoSpectralConstraint(1e3, fd.Constant(0.5), Q) J = J + Js if args.tikhonov > 0: Jt = args.tikhonov * fsz.CoarseDeformationRegularization(extension, Q) J = J + Jt if args.smooth: control_constraint = fs.InteriorControlConstraint(Q.V_r_coarse, form=extension) else: dirichlet_extension = None control_constraint = None q = fs.ControlVector(Q, innerp, control_constraint=control_constraint) vol = fsz.LevelsetFunctional(fd.Constant(10.0), Q) if args.problem == "pipe": econ_unscaled = fs.EqualityConstraint([vol]) def wrap(f): return fs.DeformationCheckObjective( f, delta_threshold=0.25 if args.dim == 2 else 0.25, # noqa strict=False) scale = 1e1 J = wrap(scale * J) volweight = 0.1 if args.dim == 2 else 1. vol = wrap(volweight * scale**0.5 * vol) econ = fs.EqualityConstraint([vol]) emul = ROL.StdVector(1)
def test_objective_plus_box_constraint(pytestconfig): n = 10 mesh = fd.UnitSquareMesh(n, n) T = mesh.coordinates.copy(deepcopy=True) (x, y) = fd.SpatialCoordinate(mesh) T.interpolate(T + fd.Constant((0, 0))) mesh = fd.Mesh(T) Q = fs.FeControlSpace(mesh) inner = fs.LaplaceInnerProduct(Q) mesh_m = Q.mesh_m q = fs.ControlVector(Q, inner) if pytestconfig.getoption("verbose"): out = fd.File("domain.pvd") def cb(): out.write(mesh_m.coordinates) else: def cb(): pass lower_bound = Q.T.copy(deepcopy=True) lower_bound.interpolate(fd.Constant((-0.2, -0.2))) upper_bound = Q.T.copy(deepcopy=True) upper_bound.interpolate(fd.Constant((+1.2, +1.2))) # levelset test case (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) - 4. J1 = fsz.LevelsetFunctional(f, Q, cb=cb, quadrature_degree=10) J2 = fsz.MoYoBoxConstraint(10., [1, 2, 3, 4], Q, lower_bound=lower_bound, upper_bound=upper_bound, cb=cb, quadrature_degree=10) J3 = fsz.MoYoSpectralConstraint(100, fd.Constant(0.6), Q, cb=cb, quadrature_degree=100) J = 0.1 * J1 + J2 + J3 g = q.clone() J.gradient(g, q, None) taylor_result = J.checkGradient(q, g, 9, 1) for i in range(len(taylor_result) - 1): if taylor_result[i][3] > 1e-6 and taylor_result[i][3] < 1e-3: assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.15 params_dict = { 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 2 } }, 'Status Test': { 'Gradient Tolerance': 1e-10, 'Step Tolerance': 1e-10, 'Iteration Limit': 10 } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() Tvec = Q.T.vector() nodes = fd.DirichletBC(Q.V_r, fd.Constant((0.0, 0.0)), [2]).nodes assert np.all(Tvec[nodes, 0] <= 1.2 + 1e-1) assert np.all(Tvec[nodes, 1] <= 1.2 + 1e-1)
(x, y) = fd.SpatialCoordinate(mesh_m) f = (pow(x, 2)) + pow(2 * y, 2) - 1 outdef = fd.File("deformation.pvd") out = fd.File("domain.pvd") V, I = Q.get_space_for_inner() T = fd.Function(V) def cb(): out.write(mesh_m.coordinates) Q.visualize_control(q, T) outdef.write(T) J = fsz.LevelsetFunctional(f, Q, cb=cb) J = 0.1 * J g = q.clone() J.gradient(g, q, None) J.checkGradient(q, g, 4, 1) params_dict = { 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } },
def test_levelset(dim, inner_t, controlspace_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for fsz.LevelsetFunctional.""" clscale = 0.1 if dim == 2 else 0.2 # make the mesh a bit coarser if we are using a multigrid control space as # we are refining anyway if controlspace_t == fs.FeMultiGridControlSpace: clscale *= 2 if dim == 2: mesh = fs.DiskMesh(clscale) elif dim == 3: mesh = fs.SphereMesh(clscale) else: raise NotImplementedError if controlspace_t == fs.BsplineControlSpace: if dim == 2: bbox = [(-2, 2), (-2, 2)] orders = [2, 2] levels = [4, 4] else: bbox = [(-3, 3), (-3, 3), (-3, 3)] orders = [2, 2, 2] levels = [3, 3, 3] Q = fs.BsplineControlSpace(mesh, bbox, orders, levels) elif controlspace_t == fs.FeMultiGridControlSpace: Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2) else: Q = controlspace_t(mesh) inner = inner_t(Q) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) cb() else: cb = None # levelset test case if dim == 2: (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(1.3 * y, 2) - 1. elif dim == 3: (x, y, z) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(0.8 * y, 2) + pow(1.3 * z, 2) - 1. else: raise NotImplementedError J = fsz.LevelsetFunctional(f, Q, cb=cb, scale=0.1) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) """ move mesh a bit to check that we are not doing the taylor test in T=id """ g = q.clone() J.gradient(g, q, None) q.plus(g) J.update(q, None, 1) """ Start taylor test """ J.gradient(g, q, None) res = J.checkGradient(q, g, 5, 1) errors = [l[-1] for l in res] assert (errors[-1] < 0.11 * errors[-2]) q.scale(0) """ End taylor test """ grad_tol = 1e-6 if dim == 2 else 1e-4 # ROL parameters params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 50 } }, 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': 150 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < grad_tol)