Exemple #1
0
def msls(points, dist_matrix):
    result_dict = {}

    for i in range(100):
        groups = random_heuristic(points, dist_matrix)
        groups = local_search_steep(groups, dist_matrix)
        result_dict[sum_all_groups_fully_connected(groups,
                                                   dist_matrix)] = groups

    return result_dict[min(result_dict)]
Exemple #2
0
def ils_big(max_time, points, dist_matrix):
    timepoint = time.time()
    groups = random_heuristic(points, dist_matrix)
    previous_groups = local_search_steep(groups, dist_matrix)
    destroy_number = random.randint(int(len(points) * 0.1),
                                    int(len(points) * 0.3))
    while get_time(timepoint) < max_time:
        new_groups, deleted = destroy(copy.deepcopy(previous_groups),
                                      destroy_number)
        new_groups = repair(new_groups, deleted, dist_matrix)
        new_groups = local_search_steep(new_groups, dist_matrix)
        if (sum_all_groups_fully_connected(new_groups, dist_matrix) <
                sum_all_groups_fully_connected(previous_groups, dist_matrix)):
            previous_groups = new_groups
    return previous_groups
Exemple #3
0
def ils_small(max_time, points, dist_matrix):
    timepoint = time.time()
    groups = random_heuristic(points, dist_matrix)
    previous_groups = local_search_steep(groups, dist_matrix)
    swap_number = random.randint(2, 10)
    while get_time(timepoint) < max_time:
        # print(get_time(timepoint))
        new_groups = swap_points(swap_number, copy.deepcopy(previous_groups))
        new_groups = local_search_steep(new_groups, dist_matrix)
        if (sum_all_groups_fully_connected(new_groups, dist_matrix) <
                sum_all_groups_fully_connected(previous_groups, dist_matrix)):
            if swap_number > 1:
                swap_number -= 1
            previous_groups = new_groups
        else:
            if swap_number < int(len(points) * 0.1):
                swap_number += 1
        # print(swap_number)
    return previous_groups
Exemple #4
0
def get_n_msls_solutions(points, dist_matrix, n):
    results = []

    for i in range(n):
        if i % 20 == 0:
            print(i)
        groups = random_heuristic(points, dist_matrix)
        groups = local_search_steep(groups, dist_matrix)
        results.append({
            'groups':
            groups,
            'result':
            sum_all_groups_fully_connected(groups, dist_matrix),
            'best_sim':
            0,
            'ave_sim':
            0
        })

    return results
Exemple #5
0
def get_solution(points, dist_matrix):
    groups = random_heuristic(points, dist_matrix)
    solution = local_search_steep(groups, dist_matrix)
    # print(1)
    return solution