def save_cube_process(self, output_filename, cube_peaks, peak_count): """ Saves the cube_fit as an hdf5 file """ output_file = h5py.File(output_filename,'w') output_file.attrs['peak_count'] = peak_count peaks = output_file.create_group("peaks") for peak in np.arange(peak_count): peak_holder = peaks.create_group("Peak%d"%peak) peak_function = fit_analysis.get_peak_function(cube_peaks, peak) peak_name = fit_analysis.get_peak_name(cube_peaks, peak) peak_penalty_function = fit_analysis.get_peak_penalty_function(cube_peaks,peak) peak_ranges = fit_analysis.get_peak_ranges(cube_peaks, peak) peak_variables = fit_analysis.get_peak_variables(cube_peaks, peak) peak_holder.attrs['function'] = peak_function peak_holder.attrs['name'] = peak_name peak_holder.attrs['penalty_function'] = peak_penalty_function peak_holder.attrs['ranges'] = peak_ranges peak_holder.attrs['variables'] = peak_variables for variable in peak_variables: image_cube = self.get_image_cube(variable) image = fit_analysis.get_image_from_cube(image_cube, peak) peak_holder.create_dataset(variable, data=image) output_file.create_dataset("integrated_residuals", data=self.cube_residuals) output_file.close()
def plot_peaks(self, image_cube, peak_count): for peak_number in np.arange(peak_count): axes = plt.subplot(1, peak_count, peak_number) axes.set_title("Peak Number %s"%str(peak_number+1)) image = fit_analysis.get_image_from_cube(image_cube, peak_number) plt.imshow(image, interpolation='nearest') plt.colorbar()
def save_cube_process(self, output_filename, cube_peaks, peak_count): """ Saves the cube_fit as an hdf5 file """ output_file = h5py.File(output_filename, 'w') output_file.attrs['peak_count'] = peak_count peaks = output_file.create_group("peaks") for peak in np.arange(peak_count): peak_holder = peaks.create_group("Peak%d" % peak) peak_function = fit_analysis.get_peak_function(cube_peaks, peak) peak_name = fit_analysis.get_peak_name(cube_peaks, peak) peak_penalty_function = fit_analysis.get_peak_penalty_function( cube_peaks, peak) peak_ranges = fit_analysis.get_peak_ranges(cube_peaks, peak) peak_variables = fit_analysis.get_peak_variables(cube_peaks, peak) peak_holder.attrs['function'] = peak_function peak_holder.attrs['name'] = peak_name peak_holder.attrs['penalty_function'] = peak_penalty_function peak_holder.attrs['ranges'] = peak_ranges peak_holder.attrs['variables'] = peak_variables for variable in peak_variables: image_cube = self.get_image_cube(variable) image = fit_analysis.get_image_from_cube(image_cube, peak) peak_holder.create_dataset(variable, data=image) output_file.create_dataset("integrated_residuals", data=self.cube_residuals) output_file.close()
def plot_peaks(self, image_cube, peak_count): for peak_number in np.arange(peak_count): axes = plt.subplot(1, peak_count, peak_number) axes.set_title("Peak Number %s" % str(peak_number + 1)) image = fit_analysis.get_image_from_cube(image_cube, peak_number) plt.imshow(image, interpolation='nearest') plt.colorbar()