Exemple #1
0
    def add_fit(self,parameters):
        if not isinstance(parameters,ndarray) or len(parameters)!=4:
            raise "parameters must be a ndarray of length 4"

        self.fits.append(parameters)

        self.c_amplitude -= fitting.lorenzian(parameters,self.frequency,{'baseline':0})
        
        self.mean = self.c_amplitude.mean()
        self.std = self.c_amplitude.std()
        self.target_std = 100.0*sqrt(self.mean*(100.0-self.mean)/(10000.0*self.stats))
Exemple #2
0
    def remove_fit(self,index):
        fit = self.fits[index]

        self.c_amplitude += fitting.lorenzian(fit,self.frequency,{'baseline':0})
        
        self.mean = self.c_amplitude.mean()
        self.std = self.c_amplitude.std()
        self.target_std = 100.0*sqrt(self.mean*(100.0-self.mean)/(10000.0*self.stats))

        self.fits.pop(index)

        return fit
Exemple #3
0
    def add_fit(self, parameters):
        if not isinstance(parameters, ndarray) or len(parameters) != 4:
            raise "parameters must be a ndarray of length 4"

        self.fits.append(parameters)

        self.c_amplitude -= fitting.lorenzian(parameters, self.frequency,
                                              {'baseline': 0})

        self.mean = self.c_amplitude.mean()
        self.std = self.c_amplitude.std()
        self.target_std = 100.0 * sqrt(self.mean * (100.0 - self.mean) /
                                       (10000.0 * self.stats))
Exemple #4
0
    def remove_fit(self, index):
        fit = self.fits[index]

        self.c_amplitude += fitting.lorenzian(fit, self.frequency,
                                              {'baseline': 0})

        self.mean = self.c_amplitude.mean()
        self.std = self.c_amplitude.std()
        self.target_std = 100.0 * sqrt(self.mean * (100.0 - self.mean) /
                                       (10000.0 * self.stats))

        self.fits.pop(index)

        return fit