Exemple #1
0
def check(records_glob, out_dir, num_imgs_to_save, num_per_ex):
    features = read_records(records_glob, num_per_ex=num_per_ex)
    imgs = features_to_images(features)
    imsaver = tf_helpers.ImageSaver(out_dir)
    imsaver_fetch = imsaver.get_fetch_dict(imgs)
    with tf_helpers.start_queues_in_sess() as (sess, _):
        for run in range(num_imgs_to_save):
            print('Run {}...'.format(run))
            imsaver.save(sess.run(imsaver_fetch),
                         img_names=[
                             '{:02d}_{:02d}.png'.format(run, ex)
                             for ex in range(num_per_ex)
                         ])
Exemple #2
0
def extract_images(records_glob,
                   max_images,
                   out_dir,
                   feature_key=_DEFAULT_FEATURE_KEY):
    tf.logging.set_verbosity(tf.logging.INFO)
    image = feature_to_image(
        read_records(records_glob,
                     num_epochs=1,
                     shuffle=False,
                     feature_key=feature_key))
    image = tf.expand_dims(image, axis=0)  # make 'batched'
    index_iterator = range(max_images) if max_images else itertools.count()
    img_names_iterator = map('img_{:010d}'.format, index_iterator)
    img_saver = tf_helpers.ImageSaver(out_dir)
    with tf_helpers.start_queues_in_sess() as (sess, coord):
        img_fetcher = sess.make_callable(img_saver.get_fetch_dict(image))
        for img_name in img_names_iterator:
            tf.logging.info('Saving {}...'.format(img_name))
            img_saver.save(img_fetcher(), img_names=[img_name])
Exemple #3
0
def train(autoencoder_config_path, probclass_config_path,
          restore_manager: RestoreManager, log_dir_root, datasets: Datasets,
          train_flags: TrainFlags, ckpt_interval_hours: float,
          description: str):
    ae_config, ae_config_rel_path = config_parser.parse(
        autoencoder_config_path)
    pc_config, pc_config_rel_path = config_parser.parse(probclass_config_path)
    print_configs(('ae_config', ae_config), ('pc_config', pc_config))

    continue_in_ckpt_dir = restore_manager and restore_manager.continue_in_ckpt_dir
    if continue_in_ckpt_dir:
        logdir = restore_manager.log_dir
    else:
        logdir = logdir_helpers.create_unique_log_dir(
            [ae_config_rel_path, pc_config_rel_path],
            log_dir_root,
            restore_dir=restore_manager.ckpt_dir if restore_manager else None)
    print(_LOG_DIR_FORMAT.format(logdir))

    if description:
        _write_to_sheets(logdir_helpers.log_date_from_log_dir(logdir),
                         ae_config_rel_path,
                         pc_config_rel_path,
                         description,
                         git_ref=_get_git_ref(),
                         log_dir_root=log_dir_root,
                         is_continue=continue_in_ckpt_dir)

    ae_cls = autoencoder.get_network_cls(ae_config)
    pc_cls = probclass.get_network_cls(pc_config)

    # Instantiate autoencoder and probability classifier
    ae = ae_cls(ae_config)
    pc = pc_cls(pc_config, num_centers=ae_config.num_centers)

    # train ---
    ip_train = inputpipeline.InputPipeline(
        inputpipeline.get_dataset(datasets.train),
        ae_config.crop_size,
        batch_size=ae_config.batch_size,
        shuffle=False,
        num_preprocess_threads=NUM_PREPROCESS_THREADS,
        num_crops_per_img=NUM_CROPS_PER_IMG)
    x_train = ip_train.get_batch()

    enc_out_train = ae.encode(
        x_train, is_training=True)  # qbar is masked by the heatmap
    x_out_train = ae.decode(enc_out_train.qbar, is_training=True)
    # stop_gradient is beneficial for training. it prevents multiple gradients flowing into the heatmap.
    pc_in = tf.stop_gradient(enc_out_train.qbar)
    bc_train = pc.bitcost(pc_in,
                          enc_out_train.symbols,
                          is_training=True,
                          pad_value=pc.auto_pad_value(ae))
    bpp_train = bits.bitcost_to_bpp(bc_train, x_train)
    d_train = Distortions(ae_config, x_train, x_out_train, is_training=True)
    # summing over channel dimension gives 2D heatmap
    heatmap2D = (tf.reduce_sum(enc_out_train.heatmap, 1)
                 if enc_out_train.heatmap is not None else None)

    # loss ---
    total_loss, H_real, pc_comps, ae_comps = get_loss(ae_config, ae, pc,
                                                      d_train.d_loss_scaled,
                                                      bc_train,
                                                      enc_out_train.heatmap)
    train_op = get_train_op(ae_config, pc_config, ip_train, pc.variables(),
                            total_loss)

    # test ---
    with tf.name_scope('test'):
        ip_test = inputpipeline.InputPipeline(
            inputpipeline.get_dataset(datasets.test),
            ae_config.crop_size,
            batch_size=ae_config.batch_size,
            num_preprocess_threads=NUM_PREPROCESS_THREADS,
            num_crops_per_img=1,
            big_queues=False,
            shuffle=False)
        x_test = ip_test.get_batch()
        enc_out_test = ae.encode(x_test, is_training=False)
        x_out_test = ae.decode(enc_out_test.qhard, is_training=False)
        bc_test = pc.bitcost(enc_out_test.qhard,
                             enc_out_test.symbols,
                             is_training=False,
                             pad_value=pc.auto_pad_value(ae))
        bpp_test = bits.bitcost_to_bpp(bc_test, x_test)
        d_test = Distortions(ae_config, x_test, x_out_test, is_training=False)

    try:  # Try to get codec distnace for current dataset
        codec_distance_ms_ssim = CodecDistance(datasets.codec_distance,
                                               codec='bpg',
                                               metric='ms-ssim')
        get_distance = functools_ext.catcher(ValueError,
                                             handler=functools_ext.const(
                                                 np.nan),
                                             f=codec_distance_ms_ssim.distance)
        get_distance = functools_ext.compose(np.float32,
                                             get_distance)  # cast to float32
        d_BPG_test = tf.py_func(get_distance, [bpp_test, d_test.ms_ssim],
                                tf.float32,
                                stateful=False,
                                name='d_BPG')
        d_BPG_test.set_shape(())
    except CodecDistanceReadException as e:
        print('Cannot compute CodecDistance: {}'.format(e))
        d_BPG_test = tf.constant(np.nan, shape=(), name='ConstNaN')

    # ---

    train_logger = Logger()
    test_logger = Logger()
    distortion_name = ae_config.distortion_to_minimize

    train_logger.add_summaries(d_train.summaries_with_prefix('train'))
    # Visualize components of losses
    train_logger.add_summaries([
        tf.summary.scalar('train/PC_loss/{}'.format(name), comp)
        for name, comp in pc_comps
    ])
    train_logger.add_summaries([
        tf.summary.scalar('train/AE_loss/{}'.format(name), comp)
        for name, comp in ae_comps
    ])
    train_logger.add_summaries([tf.summary.scalar('train/bpp', bpp_train)])
    train_logger.add_console_tensor('loss={:.3f}', total_loss)
    train_logger.add_console_tensor('ms_ssim={:.3f}', d_train.ms_ssim)
    train_logger.add_console_tensor('bpp={:.3f}', bpp_train)
    train_logger.add_console_tensor('H_real={:.3f}', H_real)

    test_logger.add_summaries(d_test.summaries_with_prefix('test'))
    test_logger.add_summaries([
        tf.summary.scalar('test/bpp', bpp_test),
        tf.summary.scalar('test/distance_BPG_MS-SSIM', d_BPG_test),
        tf.summary.image('test/x_in',
                         prep_for_image_summary(x_test, n=3, name='x_in')),
        tf.summary.image('test/x_out',
                         prep_for_image_summary(x_out_test, n=3, name='x_out'))
    ])
    if heatmap2D is not None:
        test_logger.add_summaries([
            tf.summary.image(
                'test/hm',
                prep_for_grayscale_image_summary(heatmap2D,
                                                 n=3,
                                                 autoscale=True,
                                                 name='hm'))
        ])

    test_logger.add_console_tensor('ms_ssim={:.3f}', d_test.ms_ssim)
    test_logger.add_console_tensor('bpp={:.3f}', bpp_test)
    test_logger.add_summaries([
        tf.summary.histogram('centers', ae.get_centers_variable()),
        tf.summary.histogram(
            'test/qbar', enc_out_test.qbar[:ae_config.batch_size // 2, ...])
    ])
    test_logger.add_console_tensor('d_BPG={:.6f}', d_BPG_test)
    test_logger.add_console_tensor(Logger.Numpy1DFormatter('centers={}'),
                                   ae.get_centers_variable())

    print('Starting session and queues...')
    with tf_helpers.start_queues_in_sess(
            init_vars=restore_manager is None) as (sess, coord):
        train_logger.finalize_with_sess(sess)
        test_logger.finalize_with_sess(sess)

        if restore_manager:
            restore_manager.restore(sess)

        saver = Saver(Saver.ckpt_dir_for_log_dir(logdir),
                      max_to_keep=1,
                      keep_checkpoint_every_n_hours=ckpt_interval_hours)

        train_loop(ae_config,
                   sess,
                   coord,
                   train_op,
                   train_logger,
                   test_logger,
                   train_flags,
                   logdir,
                   saver,
                   is_restored=restore_manager is not None)