def test_text_classifier_mulit_label(): corpus = NLPTaskDataFetcher.fetch_data(NLPTask.IMDB) label_dict = corpus.make_label_dictionary() glove_embedding: WordEmbeddings = WordEmbeddings('en-glove') document_embeddings: DocumentMeanEmbeddings = DocumentMeanEmbeddings( [glove_embedding], True) model = TextClassifier(document_embeddings, label_dict, True) trainer = TextClassifierTrainer(model, corpus, label_dict, False) trainer.train('./results', max_epochs=2) # clean up results directory shutil.rmtree('./results')
def test_document_mean_embeddings(): text = 'I love Berlin. Berlin is a great place to live.' sentence: Sentence = Sentence(text) glove: TokenEmbeddings = WordEmbeddings('en-glove') charlm: TokenEmbeddings = CharLMEmbeddings('mix-backward') embeddings: DocumentMeanEmbeddings = DocumentMeanEmbeddings( [glove, charlm]) embeddings.embed(sentence) assert (len(sentence.get_embedding()) != 0) sentence.clear_embeddings() assert (len(sentence.get_embedding()) == 0)
def test_text_classifier_mulit_label(): corpus = NLPTaskDataFetcher.fetch_data(NLPTask.IMDB) label_dict = corpus.make_label_dictionary() glove_embedding: WordEmbeddings = WordEmbeddings('en-glove') document_embeddings: DocumentMeanEmbeddings = DocumentMeanEmbeddings([glove_embedding], True) model = TextClassifier(document_embeddings, label_dict, True) trainer = TextClassifierTrainer(model, corpus, label_dict, False) trainer.train('./results', max_epochs=2) sentence = Sentence("Berlin is a really nice city.") for s in model.predict(sentence): for l in s.labels: assert(l.name is not None) assert(0.0 <= l.confidence <= 1.0) assert(type(l.confidence) is float) # clean up results directory shutil.rmtree('./results')