Exemple #1
0
    def _log_likelihood_inner(self, i_batch, params, dsetname, autograph):
        # Does for loop over datasets and sources, not batches
        # Sum over sources is first in likelihood

        # Compute differential rates from all sources
        # drs = list[n_sources] of [n_events] tensors
        drs = tf.zeros((self.batch_size[dsetname],), dtype=fd.float_type())
        for sname, s in self.sources.items():
            if not self.d_for_s[sname] == dsetname:
                continue
            rate_mult = self._get_rate_mult(sname, params)
            dr = s.differential_rate(s.data_tensor[i_batch],
                                     autograph=autograph,
                                     **self._filter_source_kwargs(params, sname))
            drs += dr * rate_mult

        # Sum over events and remove padding
        n = tf.where(tf.equal(i_batch,
                              tf.constant(self.n_batches[dsetname] - 1,
                                          dtype=fd.int_type())),
                     self.batch_size[dsetname] - self.n_padding[dsetname],
                     self.batch_size[dsetname])
        ll = tf.reduce_sum(tf.math.log(drs[:n]))

        # Add mu once (to the first batch)
        # and constraint really only once (to first batch of first dataset)
        ll += tf.where(tf.equal(i_batch, tf.constant(0, dtype=fd.int_type())),
                       -self.mu(dsetname, **params)
                           + (self.log_constraint(**params)
                              if dsetname == self.dsetnames[0] else 0.),
                       0.)
        return ll
Exemple #2
0
    def log_likelihood(self, autograph=True, second_order=False,
                       omit_grads=tuple(), **kwargs):
        if second_order:
            # Compute the likelihood, jacobian and hessian
            # Use only non-tf.function version, in principle works with
            # but this leads to very long tracing times and we only need
            # hessian once
            f = self._log_likelihood_grad2
        else:
            # Computes the likelihood and jacobian
            f = self._log_likelihood_tf if autograph else self._log_likelihood

        params = self.prepare_params(kwargs)
        n_grads = len(self.param_defaults) - len(omit_grads)
        ll = tf.constant(0., dtype=fd.float_type())
        llgrad = tf.zeros(n_grads, dtype=fd.float_type())
        llgrad2 = tf.zeros((n_grads, n_grads), dtype=fd.float_type())

        for dsetname in self.dsetnames:
            for i_batch in tf.range(self.n_batches[dsetname], dtype=fd.int_type()):
                v = f(i_batch, dsetname, autograph, omit_grads=omit_grads, **params)
                ll += v[0]
                llgrad += v[1]
                if second_order:
                    llgrad2 += v[2]

        if second_order:
            return ll, llgrad, llgrad2
        return ll, llgrad
    def log_likelihood(self, second_order=False, omit_grads=tuple(), **kwargs):
        params = self.prepare_params(kwargs)
        n_grads = len(self.param_defaults) - len(omit_grads)
        ll = 0.
        llgrad = np.zeros(n_grads, dtype=np.float64)
        llgrad2 = np.zeros((n_grads, n_grads), dtype=np.float64)

        for dsetname in self.dsetnames:
            # Getting this from the batch_info tensor is much slower
            n_batches = self.sources[self.sources_in_dset[dsetname]
                                     [0]].n_batches

            for i_batch in range(n_batches):
                # Iterating over tf.range seems much slower!
                results = self._log_likelihood(
                    tf.constant(i_batch, dtype=fd.int_type()),
                    dsetname=dsetname,
                    data_tensor=self.data_tensors[dsetname][i_batch],
                    batch_info=self.batch_info,
                    omit_grads=omit_grads,
                    second_order=second_order,
                    **params)

                ll += results[0].numpy().astype(np.float64)

                if len(self.param_names):
                    llgrad += results[1].numpy().astype(np.float64)
                    if second_order:
                        llgrad2 += results[2].numpy().astype(np.float64)

        if second_order:
            return ll, llgrad, llgrad2
        return ll, llgrad, None
Exemple #4
0
    def _fetch(self, x, data_tensor=None):
        """Return a tensor column from the original dataframe (self.data)
        :param x: column name
        :param data_tensor: Data tensor, columns as in self.name_id
        """
        if data_tensor is None:
            # We're inside annotate, just return the column
            return fd.np_to_tf(self.data[x].values)

        col_id = tf.dtypes.cast(self.name_id.lookup(tf.constant(x)),
                                fd.int_type())
        # if i_batch is None:
        #     return tf.reshape(self.data_tensor[:,:,col_id], [-1])
        # else:
        return data_tensor[:, col_id]
    def _log_likelihood_inner(self, i_batch, params, dsetname, data_tensor,
                              batch_info):
        """Return log likelihood contribution of one batch in a dataset

        This loops over sources in the dataset and events in the batch,
        but not not over datasets or batches.
        """
        # Retrieve batching info. Cannot use tuple-unpacking, tensorflow
        # doesn't like it when you iterate over tenstors
        dataset_index = self.dsetnames.index(dsetname)
        n_batches = batch_info[dataset_index, 0]
        batch_size = batch_info[dataset_index, 1]
        n_padding = batch_info[dataset_index, 2]

        # Compute differential rates from all sources
        # drs = list[n_sources] of [n_events] tensors
        drs = tf.zeros((batch_size, ), dtype=fd.float_type())
        for source_i, sname in enumerate(self.sources_in_dset[dsetname]):
            s = self.sources[sname]
            rate_mult = self._get_rate_mult(sname, params)

            col_start, col_stop = self.column_indices[dsetname][source_i]
            dr = s.differential_rate(
                data_tensor[:, col_start:col_stop],
                # We are already tracing; if we call the traced function here
                # it breaks the Hessian (it will give NaNs)
                autograph=False,
                **self._filter_source_kwargs(params, sname))
            drs += dr * rate_mult

        # Sum over events and remove padding
        n = tf.where(tf.equal(i_batch, n_batches - 1), batch_size - n_padding,
                     batch_size)
        ll = tf.reduce_sum(tf.math.log(drs[:n]))

        # Add mu once (to the first batch)
        # and constraint really only once (to first batch of first dataset)
        ll += tf.where(
            tf.equal(i_batch, tf.constant(0, dtype=fd.int_type())),
            -self.mu(dsetname, **params) + (self.log_constraint(
                **params) if dsetname == self.dsetnames[0] else 0.), 0.)
        return ll
Exemple #6
0
 def _fetch_param(self, param, ptensor):
     if ptensor is None:
         return self.defaults[param]
     id = tf.dtypes.cast(self.param_id[param], dtype=fd.int_type())
     return ptensor[id]
Exemple #7
0
 def _fetch_param(self, param, ptensor):
     if ptensor is None:
         return self.defaults[param]
     id = tf.dtypes.cast(self.param_id.lookup(tf.constant(param)),
                         dtype=fd.int_type())
     return ptensor[id]
    def set_data(self, data: ty.Union[pd.DataFrame, ty.Dict[str,
                                                            pd.DataFrame]]):
        """set new data for sources in the likelihood.
        Data is passed in the same format as for __init__
        Data can contain any subset of the original data keys to only
        update specific datasets.
        """
        if isinstance(data, pd.DataFrame):
            assert len(self.dsetnames) == 1, \
                "You passed one DataFrame but there are multiple datasets"
            data = {DEFAULT_DSETNAME: data}

        is_none = [d is None for d in data.values()]
        if any(is_none):
            if not all(is_none):
                warnings.warn(
                    "Cannot set only one dataset to None: "
                    "setting all to None instead.", UserWarning)
            for s in self.sources.values():
                s.set_data(None)
                return

        batch_info = np.zeros((len(self.dsetnames), 3), dtype=np.int)

        for sname, source in self.sources.items():
            dname = self.dset_for_source[sname]
            if dname not in data:
                warnings.warn(f"Dataset {dname} not provided in set_data")
                continue

            # Copy ensures annotations don't clobber
            source.set_data(deepcopy(data[dname]))

            dset_index = self.dsetnames.index(dname)
            batch_info[dset_index, :] = [
                source.n_batches, source.batch_size, source.n_padding
            ]

        self.batch_info = tf.convert_to_tensor(batch_info, dtype=fd.int_type())

        # Build a big data tensor for each dataset.
        # Each source has an [n_batches, batch_size, n_columns] tensor.
        # Since the number of columns are different, we must concat along
        # axis=2 and track which indices belong to which source.
        self.data_tensors = {
            dsetname: tf.concat([
                self.sources[sname].data_tensor
                for sname in self.sources_in_dset[dsetname]
            ],
                                axis=2)
            for dsetname in self.dsetnames
        }

        self.column_indices = dict()
        for dsetname in self.dsetnames:
            # Do not use len(cols_to_cache), some sources have extra columns...
            stop_idx = np.cumsum([
                self.sources[sname].data_tensor.shape[2]
                for sname in self.sources_in_dset[dsetname]
            ])
            self.column_indices[dsetname] = np.transpose(
                [np.concatenate([[0], stop_idx[:-1]]), stop_idx])
Exemple #9
0
 def energy_spectrum(self, i_batch):
     """Return (energies in keV, events at these energies)
     """
     batch = tf.dtypes.cast(i_batch[0], dtype=fd.int_type())
     return self.all_es_centers, self.energy_tensor[batch, :, :]
Exemple #10
0
 def spatial_rate_mult(self, i_batch):
     batch = tf.dtypes.cast(i_batch[0], dtype=fd.int_type())
     return self.spatial_rate_tensor[batch]