Exemple #1
0
def test_detection_fiftyone(tmpdir, head, backbone):

    train_dataset = _create_synth_fiftyone_dataset(tmpdir)

    data = ObjectDetectionData.from_fiftyone(train_dataset=train_dataset,
                                             batch_size=1)
    model = ObjectDetector(head=head,
                           backbone=backbone,
                           num_classes=data.num_classes)

    trainer = flash.Trainer(fast_dev_run=True, gpus=torch.cuda.device_count())

    trainer.finetune(model, data, strategy="freeze")

    test_image_one = os.fspath(tmpdir / "test_one.png")
    test_image_two = os.fspath(tmpdir / "test_two.png")

    Image.new("RGB", (512, 512)).save(test_image_one)
    Image.new("RGB", (512, 512)).save(test_image_two)

    test_images = [str(test_image_one), str(test_image_two)]
    model.predict(test_images)
Exemple #2
0
def test_detection_fiftyone(tmpdir, model, backbone):

    train_dataset = _create_synth_fiftyone_dataset(tmpdir)

    data = ObjectDetectionData.from_fiftyone(train_dataset=train_dataset,
                                             batch_size=1)
    model = ObjectDetector(model=model,
                           backbone=backbone,
                           num_classes=data.num_classes)

    trainer = flash.Trainer(fast_dev_run=True)

    trainer.finetune(model, data)

    test_image_one = os.fspath(tmpdir / "test_one.png")
    test_image_two = os.fspath(tmpdir / "test_two.png")

    Image.new('RGB', (512, 512)).save(test_image_one)
    Image.new('RGB', (512, 512)).save(test_image_two)

    test_images = [str(test_image_one), str(test_image_two)]
    model.predict(test_images)
    "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip",
    "data/")

datamodule = ObjectDetectionData.from_coco(
    train_folder="data/coco128/images/train2017/",
    train_ann_file="data/coco128/annotations/instances_train2017.json",
    val_split=0.1,
    image_size=128,
)

# 2. Build the task
model = ObjectDetector(head="efficientdet",
                       backbone="d0",
                       num_classes=datamodule.num_classes,
                       image_size=128)

# 3. Create the trainer and finetune the model
trainer = flash.Trainer(max_epochs=1)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")

# 4. Detect objects in a few images!
predictions = model.predict([
    "data/coco128/images/train2017/000000000625.jpg",
    "data/coco128/images/train2017/000000000626.jpg",
    "data/coco128/images/train2017/000000000629.jpg",
])
print(predictions)

# 5. Save the model!
trainer.save_checkpoint("object_detection_model.pt")