Exemple #1
0
def multiple_saliency_maps(model, tensors, start, num, k=0, guide = True):
    backprop = Backprop(model)
    for i in range(start,start+num):
        cur_image = tensors[i,:,:,:].unsqueeze(0).requires_grad_(requires_grad=True)
        backprop.visualize(cur_image, k, guided=guide)
        plt.show()
    print("Range: ", start, " - ", start+num)
    start += num
    return start
Exemple #2
0
def test_visualize_calls_calculate_gradients_twice(mocker, model):
    backprop = Backprop(model)
    mocker.spy(backprop, 'calculate_gradients')

    top_class = 5
    target_class = 5
    input_ = torch.zeros([1, 3, 224, 224])

    make_expected_gradient_target(top_class)
    make_mock_output(mocker, model, target_class)

    backprop.visualize(input_, target_class, use_gpu=True)

    assert backprop.calculate_gradients.call_count == 2
Exemple #3
0
def di_saliency():

    hockey_path_violence = '/media/david/datos/Violence DATA/HockeyFights/frames/violence'
    hockey_path_noviolence = '/media/david/datos/Violence DATA/HockeyFights/frames/nonviolence'
    datasetAll, labelsAll, numFramesAll = createDataset(hockey_path_violence, hockey_path_noviolence) #ordered
    print(len(datasetAll), len(labelsAll), len(numFramesAll))

    input_size = 224
    data_transforms = createTransforms(input_size)
    dataset_source = "frames"
    debugg_mode = False
    avgmaxDuration = 1.66
    interval_duration = 0.3
    numDiPerVideos = 1
    batch_size = 1
    num_workers = 1

    # model = torch.load('models/alexnet-frames-Finetuned:True-1di-tempMaxPool-OnPlateau.tar')
    path = os.path.join('models','alexnet-frames-Finetuned:True-1di-tempMaxPool-OnPlateau.tar')
    # model, input_size = initialize_model( model_name='alexnet', num_classes=2, feature_extract=False, numDiPerVideos=1, joinType='OnPlateau', use_pretrained=True)
    # model = load_checkpoint(model,'models/alexnet-frames-Finetuned:True-1di-tempMaxPool-OnPlateau.tar')
    # model.load_state_dict(torch.load(path))
    model = torch.load(path)
    model.cuda()
    backprop = Backprop(model)

    image_datasets = {
        "train": ViolenceDatasetVideos( dataset=datasetAll, labels=labelsAll, spatial_transform=data_transforms["train"], source=dataset_source,
            interval_duration=interval_duration,difference=3, maxDuration=avgmaxDuration, nDynamicImages=numDiPerVideos, debugg_mode=debugg_mode, ),
        "test": ViolenceDatasetVideos( dataset=datasetAll, labels=labelsAll, spatial_transform=data_transforms["test"], source=dataset_source,
            interval_duration=interval_duration, difference=3, maxDuration=avgmaxDuration, nDynamicImages=numDiPerVideos, debugg_mode=debugg_mode, )
    }
    dataloaders_dict = {
        "train": torch.utils.data.DataLoader( image_datasets["train"], batch_size=batch_size, shuffle=False, num_workers=num_workers, ),
        "test": torch.utils.data.DataLoader( image_datasets["test"], batch_size=batch_size, shuffle=False, num_workers=num_workers, ),
    }
    count = 0
    max_plots = 5
    for inputs, labels in dataloaders_dict["test"]:
        count += 1
        if count > max_plots:
            break
        print('*' * 12)
        print('inputs size: ',inputs.size())
        # inputs = inputs.permute(1, 0, 2, 3, 4)
        inputs = inputs.cuda()
        # labels = labels.to(self.device)
        backprop.visualize(inputs, target_class=None, guided=False, use_gpu=True, di=True)
Exemple #4
0
def test_visualize_passes_gpu_flag(mocker, model):
    backprop = Backprop(model)
    mocker.spy(backprop, 'calculate_gradients')

    top_class = 5
    target_class = 5
    input_ = torch.zeros([1, 3, 224, 224])

    make_expected_gradient_target(top_class)
    make_mock_output(mocker, model, target_class)

    backprop.visualize(input_, target_class, use_gpu=True)

    _, _, kwargs = backprop.calculate_gradients.mock_calls[0]

    assert kwargs['use_gpu']
Exemple #5
0
def visualise_cnn(model_name, image, class_label, model_path=None, title=None):
    if model_path is None:
        model = get_model(model_name)
    else:
        model = get_model(model_name)
        model = load_model(model, model_path)
    model.eval()
    backprop = Backprop(model)
    # Transform the input image to a tensor
    img = apply_transforms(image)
    # Set a target class from ImageNet task: 24 in case of great gray owl

    imagenet = ImageNetIndex()
    target_class = imagenet[class_label]
    # Ready to roll!
    backprop.visualize(img, target_class, guided=True, title=title)
Exemple #6
0
def saliency():

    """### 1. Load an image"""

    buho = 'images/great_grey_owl.jpg'
    di1 = 'images/1.png'
    image = load_image(buho)
    # image = load_image(buho)

    # plt.imshow(image)
    # plt.title('Original image'+str(type(image)))
    # plt.axis('off');
    # plt.show()
    """### 2. Load a pre-trained Model"""

    model = models.alexnet(pretrained=True)
    # model = torch.load('/content/alexnet-frames-Finetuned:False-1di-tempMaxPool-OnPlateau.tar')

    """### 3. Create an instance of Backprop with the model"""

    backprop = Backprop(model)

    """### 4. Visualize saliency maps"""

    # Transform the input image to a tensor

    owl = apply_transforms(image)
    # print(owl.size()) #torch.Size([/1, 3, 224, 224])
    # input_size = 224
    # data_transforms = createTransforms(input_size)
    # owl = data_transforms['test'](image)
    # owl = owl.unsqueeze(dim=0)
    # owl = owl.unsqueeze(dim=0)
    # owl = owl.permute(1, 0, 2, 3, 4)
    # print(owl.size())

    # Set a target class from ImageNet task: 24 in case of great gray owl

    target_class = 24

    # Ready to roll!

    backprop.visualize(owl, target_class=target_class, guided=True, use_gpu=True)
Exemple #7
0
NIH_CXR_BASE = CXR_BASE.joinpath("nih/v1").resolve()
test_df = pd.read_csv("~/cxr-jingyi/Age/NIH_test_2500.csv")

path1 = test_df.iloc[0]['path']
path1 = NIH_CXR_BASE.joinpath(path1).resolve()

import matplotlib.pyplot as plt
from flashtorch.utils import apply_transforms, load_image
from flashtorch.saliency import Backprop

image = load_image(str(path1))
plt.imshow(image)

model = MobileNet(16)
checkpoint = torch.load(
    '/home/jingyi/cxr-jingyi/Age/result/supervised/model_best.pth.tar')
model.load_state_dict(checkpoint['state_dict'])

backprop = Backprop(model)
# Transform the input image to a tensor

owl = apply_transforms(image)

# Set a target class from ImageNet task: 24 in case of great gray owl

target_class = 16

# Ready to roll!

backprop.visualize(owl, target_class, guided=True)
Exemple #8
0
def visualize_helper(model_module, tensor=img, k=854):
    model = model_module(pretrained=True).float()
    backprop = Backprop(model)
    backprop.visualize(tensor, k, guided=True)
Exemple #9
0
import matplotlib.pyplot as plt
import torchvision.models as models
from flashtorch.utils import load_image
from flashtorch.saliency import Backprop
from flashtorch.utils import apply_transforms
image = load_image("G:\EEGNet/test/test.jpg")

plt.imshow(image)

net = models.vgg16(pretrained=1)

backprop = Backprop(net)

input_ = apply_transforms(image)

target_class = 24

backprop.visualize(input_, target_class, guided=True)
Exemple #10
0
import os  # NOQA: E402
os.environ["CUDA_VISIBLE_DEVICES"] = "1"  # NOQA: E402
import matplotlib.pyplot as plt
import torchvision.models as models

from flashtorch.utils import apply_transforms, load_image
from flashtorch.saliency import Backprop

### 1. Load a pre-trained Model
# model = models.alexnet(pretrained=True)
model = models.vgg16(pretrained=True)
### 2. Create an instance of Backprop with the model
backprop = Backprop(model)
path = './figure'
path_names = os.listdir(path)
for i in range(len(path_names)):
    peacock = apply_transforms(load_image(os.path.join(path, path_names[i])))
    backprop.visualize(peacock, None, guided=True, use_gpu=True)
    plt.show()
Exemple #11
0
def visualize_saliency(model, tensor, k=1, guide=True):
    backprop = Backprop(model)
    backprop.visualize(tensor, k, guided=guide)
    plt.show()