Exemple #1
0
def run_search_post():
    data = request.values
    matching_tolerance = float(data.get("ms1-tolerance", 10))
    if matching_tolerance > 1e-4:
        matching_tolerance *= 1e-6

    grouping_tolerance = float(data.get("peak-grouping-tolerance", 15))
    if grouping_tolerance > 1e-4:
        grouping_tolerance *= 1e-6

    ms2_matching_tolerance = float(data.get("ms2-tolerance", 20))
    if ms2_matching_tolerance > 1e-4:
        ms2_matching_tolerance *= 1e-6

    psm_fdr_threshold = float(data.get("q-value-threshold", 0.05))

    hypothesis_uuid = (data.get("hypothesis_choice"))
    hypothesis_record = g.manager.hypothesis_manager.get(hypothesis_uuid)
    hypothesis_name = hypothesis_record.name

    sample_records = list(
        map(g.manager.sample_manager.get, data.getlist("samples")))

    minimum_oxonium_threshold = float(
        data.get("minimum-oxonium-threshold", 0.05))
    workload_size = int(data.get("batch-size", 1000))

    for sample_record in sample_records:
        sample_name = sample_record.name
        job_number = g.manager.get_next_job_number()
        name_prefix = "%s at %s (%d)" % (hypothesis_name, sample_name,
                                         job_number)
        cleaned_prefix = re.sub(r"[\s\(\)]", "_", name_prefix)
        name_template = g.manager.get_results_path(
            secure_filename(cleaned_prefix) + "_%s.analysis.db")
        storage_path = make_unique_name(name_template)

        task = AnalyzeGlycopeptideSequenceTask(
            hypothesis_record.path,
            sample_record.path,
            hypothesis_record.id,
            storage_path,
            name_prefix,
            grouping_error_tolerance=grouping_tolerance,
            mass_error_tolerance=matching_tolerance,
            msn_mass_error_tolerance=ms2_matching_tolerance,
            psm_fdr_threshold=psm_fdr_threshold,
            minimum_oxonium_threshold=minimum_oxonium_threshold,
            workload_size=workload_size,
            job_name_part=job_number)
        g.add_task(task)
        print(task)
    return Response("Tasks Scheduled")
def run_search_post():
    data = request.values
    mass_shift_data = list(zip(data.getlist('mass_shift_name'),
                               data.getlist('mass_shift_max_count')))
    mass_shift_data = mass_shift_data[:-1]
    mass_shift_data = [(a, int(b)) for a, b in mass_shift_data]

    matching_tolerance = float(data.get("mass-matching-tolerance", 10))
    if matching_tolerance > 1e-4:
        matching_tolerance *= 1e-6

    grouping_tolerance = float(data.get("peak-grouping-tolerance", 15))
    if grouping_tolerance > 1e-4:
        grouping_tolerance *= 1e-6

    hypothesis_uuid = (data.get("hypothesis_choice"))
    hypothesis_record = g.manager.hypothesis_manager.get(hypothesis_uuid)

    sample_records = list(map(g.manager.sample_manager.get, data.getlist("samples")))

    minimum_mass = float(data.get("minimum-mass", 500.))

    hypothesis_name = hypothesis_record.name
    for sample_record in sample_records:
        sample_name = sample_record.name
        job_number = g.manager.get_next_job_number()
        name_prefix = "%s at %s (%d)" % (hypothesis_name, sample_name, job_number)
        cleaned_prefix = re.sub(r"[\s\(\)]", "_", name_prefix)
        name_template = g.manager.get_results_path(
            secure_filename(cleaned_prefix) + "_%s.analysis.db")
        storage_path = make_unique_name(name_template)

        task = AnalyzeGlycanCompositionTask(
            hypothesis_record.path, sample_record.path, hypothesis_record.id,
            storage_path, name_prefix, mass_shift_data, grouping_tolerance,
            matching_tolerance,
            minimum_mass=minimum_mass,
            callback=lambda: 0,
            job_name_part=job_number)
        g.add_task(task)

    return Response("Tasks Scheduled")
Exemple #3
0
def post_add_sample():
    """Handle an uploaded sample file

    Returns
    -------
    Response
    """
    sample_name = request.values['sample-name']
    if sample_name == "":
        sample_name = request.files['observed-ions-file'].filename
    # If no sample name could be constructed at this point
    # and we are not running a native client, stop now.
    if sample_name == "" and not g.has_native_client:
        current_app.logger.info("No sample name could be extracted. %r", request.values)
        return abort(400)

    # If we are running in the native client, then the program
    # have different information about where to read file information
    # from. Normal browsers cannot access the full path of files being
    # uploaded, but Electron can. It will intercept the file upload and
    # instead send its native path. Since the native client is running
    # on the local file system, we can directly read from that path
    # without needing to first copy the sample file to application server's
    # file system.
    if g.has_native_client:
        native_path = request.values.get("observed-ions-file-path")
        if sample_name == "":
            sample_name = os.path.splitext(os.path.basename(native_path))[0]
        if sample_name == "":
            current_app.logger.info("No sample name could be extracted. %r", request.values)
            abort(400)
        path = native_path
        sample_name = g.manager.make_unique_sample_name(
            sample_name)
        secure_name = secure_filename(sample_name)
        current_app.logger.info(
            "Preparing to run with native path: %r, %r, %r", path, sample_name, secure_name)
    else:
        file_name = request.files['observed-ions-file'].filename
        sample_name = g.manager.make_unique_sample_name(
            sample_name)
        secure_name = secure_filename(file_name)
        path = g.manager.get_temp_path(secure_name)
        request.files['observed-ions-file'].save(path)

    storage_path = g.manager.get_sample_path(
        re.sub(r"[\s\(\)]", "_", secure_name) + '-%s.mzML')

    storage_path = make_unique_name(storage_path)
    touch_file(storage_path)

    # Construct the task with a callback to add the processed sample
    # to the set of project samples

    start_time = float(request.values['start-time'])
    end_time = float(request.values['end-time'])

    extract_only_tandem_envelopes = bool(request.values.get("msms-features-only", False))

    prefab_averagine = request.values['ms1-averagine']
    prefab_msn_averagine = request.values['msn-averagine']

    custom_ms1_averagine_formula = request.values['ms1-averagine-custom']
    custom_msn_averagine_formula = request.values['msn-averagine-custom']

    if custom_ms1_averagine_formula:
        averagine = custom_ms1_averagine_formula
    else:
        averagine = prefab_averagine

    if custom_msn_averagine_formula:
        msn_averagine = custom_msn_averagine_formula
    else:
        msn_averagine = prefab_msn_averagine

    ms1_score_threshold = float(request.values['ms1-minimum-isotopic-score'])
    msn_score_threshold = float(request.values['msn-minimum-isotopic-score'])

    missed_peaks = int(request.values['missed-peaks'])
    msn_missed_peaks = int(request.values['msn-missed-peaks'])
    maximum_charge_state = int(request.values['maximum-charge-state'])

    ms1_background_reduction = float(request.values.get(
        'ms1-background-reduction', 5.))
    msn_background_reduction = float(request.values.get(
        'msn-background-reduction', 0.))

    n_workers = g.manager.configuration.get("preprocessor_worker_count", 6)
    if cpu_count() < n_workers:
        n_workers = cpu_count()

    task = PreprocessMSTask(
        path, g.manager.connection_bridge,
        averagine, start_time, end_time, maximum_charge_state,
        sample_name, msn_averagine, ms1_score_threshold,
        msn_score_threshold, missed_peaks, msn_missed_peaks, n_processes=n_workers,
        storage_path=storage_path, extract_only_tandem_envelopes=extract_only_tandem_envelopes,
        ms1_background_reduction=ms1_background_reduction,
        msn_background_reduction=msn_background_reduction,
        callback=lambda: 0)

    g.add_task(task)
    return Response("Task Scheduled")
Exemple #4
0
def build_glycopeptide_search_space_post():
    values = request.values
    # Separate the JS-based workaround to avoid inappropriate multivalue encoding
    # being parsed incorrectly by Werkzeug
    constant_modifications = values.get("constant_modifications").split(";;;")
    variable_modifications = values.get("variable_modifications").split(";;;")

    constant_modifications = [
        const_mod for const_mod in constant_modifications if const_mod
    ]
    variable_modifications = [
        var_mod for var_mod in variable_modifications if var_mod
    ]

    enzyme = values.getlist("enzyme")
    if len(enzyme) == 1:
        enzyme = enzyme[0]
    custom_enzyme = values.get("custom-protease")
    if custom_enzyme:
        if enzyme:
            if isinstance(enzyme, list):
                enzyme.append(custom_enzyme)
            else:
                enzyme = [enzyme, custom_enzyme]
        else:
            enzyme = custom_enzyme

    hypothesis_name = values.get("hypothesis_name")
    hypothesis_name = g.manager.make_unique_hypothesis_name(hypothesis_name)

    generate_reverse_decoys = values.get("generate-reverse-decoys") == 'on'
    generate_full_crossproduct = values.get(
        "generate-full-crossproduct") == 'on'

    secure_name = secure_filename(hypothesis_name if hypothesis_name
                                  is not None else "glycopeptde_database")
    storage_path = safepath(
        g.manager.get_hypothesis_path(re.sub(r"[\s\(\)]", "_", secure_name)) +
        '_glycopeptde_%s.database')
    storage_path = make_unique_name(storage_path)
    touch_file(storage_path)

    protein_list = request.files["protein-list-file"]
    protein_list_type = values.get("proteomics-file-type")
    glycan_file = request.files.get("glycan-definition-file")
    glycan_database = values.get("glycan-database-source")
    glycan_file_type = values.get("glycans-file-format")

    glycan_options = {}

    max_missed_cleavages = intify(values.get("missed_cleavages"))
    maximum_glycosylation_sites = intify(
        values.get("max_glycosylation_sites", 1))

    secure_protein_list = safepath(
        g.manager.get_temp_path(secure_filename(protein_list.filename)))
    protein_list.save(secure_protein_list)

    peptide_min_length = intify(values.get('peptide_min_length', 4), 4)
    peptide_max_length = intify(values.get('peptide_max_length', 60), 60)
    semispecific_digest = values.get('semispecific-digest') == 'on'
    non_specific_digest = values.get("non-specific-digest") == 'on'

    # The non-specific digest mode overrides all other digest parameters
    if non_specific_digest:
        enzyme = "."
        max_missed_cleavages = peptide_max_length
        semispecific_digest = False

    if glycan_database == "" or glycan_database is None:
        glycan_file_type = "text"
        glycan_options["glycan_source_type"] = glycan_file_type

        secure_glycan_file = g.manager.get_temp_path(
            secure_filename(glycan_file.filename))
        glycan_file.save(secure_glycan_file)

        glycan_options["glycomics_source"] = secure_glycan_file
        glycan_options["glycan_source_identifier"] = None
    else:
        option_type, option_id = glycan_database.split(",", 1)

        record = g.manager.hypothesis_manager.get(option_id)
        identifier = record.id

        glycan_options["glycan_source_identifier"] = identifier

        if option_type == "Hypothesis":
            option_type = "hypothesis"
            glycan_options["glycomics_source"] = record.path
        elif option_type == "Analysis":
            option_type = "analysis"
            glycan_options["glycomics_source"] = record.path

        glycan_options["glycan_source_type"] = option_type

    n_workers = g.manager.configuration.get("database_build_worker_count", 4)
    if protein_list_type == "fasta":
        task = BuildGlycopeptideHypothesisFasta(
            storage_path,
            fasta_file=secure_protein_list,
            enzyme=enzyme,
            missed_cleavages=max_missed_cleavages,
            occupied_glycosites=maximum_glycosylation_sites,
            name=hypothesis_name,
            constant_modification=constant_modifications,
            variable_modification=variable_modifications,
            processes=n_workers,
            glycan_source=glycan_options["glycomics_source"],
            glycan_source_type=glycan_options["glycan_source_type"],
            glycan_source_identifier=glycan_options[
                "glycan_source_identifier"],
            peptide_length_range=(peptide_min_length, peptide_max_length),
            semispecific_digest=semispecific_digest,
            generate_reverse_decoys=generate_reverse_decoys,
            generate_full_crossproduct=generate_full_crossproduct)
        g.add_task(task)
    elif protein_list_type == 'mzIdentML':
        protein_names = values.get("protein_names").split(",")
        task = BuildGlycopeptideHypothesisMzId(
            storage_path,
            secure_protein_list,
            name=hypothesis_name,
            occupied_glycosites=maximum_glycosylation_sites,
            target_protein=protein_names,
            processes=n_workers,
            glycan_source=glycan_options['glycomics_source'],
            glycan_source_type=glycan_options['glycan_source_type'],
            glycan_source_identifier=glycan_options[
                "glycan_source_identifier"],
            peptide_length_range=(peptide_min_length, peptide_max_length),
            generate_reverse_decoys=generate_reverse_decoys,
            generate_full_crossproduct=generate_full_crossproduct)
        g.add_task(task)
    else:
        abort(400)
    return Response("Task Scheduled")
Exemple #5
0
def schedule_error_dummy_task():
    task = DummyTask(throw=True)
    g.add_task(task)
    return jsonify(task_id=task.id)
Exemple #6
0
def schedule_dummy_task():
    task = DummyTask()
    g.add_task(task)
    return jsonify(task_id=task.id)
def run_search_post():
    data = request.values
    matching_tolerance = float(data.get("ms1-tolerance", 10))
    if matching_tolerance > 1e-4:
        matching_tolerance *= 1e-6

    grouping_tolerance = float(data.get("peak-grouping-tolerance", 15))
    if grouping_tolerance > 1e-4:
        grouping_tolerance *= 1e-6

    ms2_matching_tolerance = float(data.get("ms2-tolerance", 20))
    if ms2_matching_tolerance > 1e-4:
        ms2_matching_tolerance *= 1e-6

    psm_fdr_threshold = float(data.get("q-value-threshold", 0.05))

    use_peptide_mass_filter = data.get("peptide-mass-filter")
    if use_peptide_mass_filter == 'on':
        use_peptide_mass_filter = True
    else:
        use_peptide_mass_filter = False

    permute_decoy_glycan_fragments = data.get("permute-decoy-glycan-fragments")
    if permute_decoy_glycan_fragments == 'on':
        permute_decoy_glycan_fragments = True
    else:
        permute_decoy_glycan_fragments = False

    include_rare_signature_ions = data.get("include-rare-signature-ions")
    if include_rare_signature_ions == 'on':
        include_rare_signature_ions = True
    else:
        include_rare_signature_ions = False

    model_retention_time = data.get("model-retention-time")
    if model_retention_time == 'on':
        model_retention_time = True
    else:
        model_retention_time = False

    msn_scoring_model_name = data.get("msn-scoring-model")
    tandem_scoring_model, msn_scoring_options = validate_glycopeptide_tandem_scoring_function(None, msn_scoring_model_name)
    if msn_scoring_options:
        current_app.logger.warning("Requested scoring model %s has unused options %s", msn_scoring_model_name, msn_scoring_options)

    hypothesis_uuid = (data.get("hypothesis_choice"))
    hypothesis_record = g.manager.hypothesis_manager.get(hypothesis_uuid)
    hypothesis_name = hypothesis_record.name

    decoy_hypothesis_record = hypothesis_record.decoy_hypothesis
    decoy_hypothesis_path = None
    decoy_hypothesis_id = None
    if decoy_hypothesis_record is not None:
        decoy_hypothesis_path = decoy_hypothesis_record.path
        decoy_hypothesis_id = decoy_hypothesis_record.id

    search_strategy = GlycopeptideSearchStrategyEnum.classic
    if decoy_hypothesis_record and not hypothesis_record.is_full_crossproduct:
        search_strategy = GlycopeptideSearchStrategyEnum.multipart
    elif decoy_hypothesis_record:
        search_strategy = GlycopeptideSearchStrategyEnum.classic_comparison

    sample_records = list(map(g.manager.sample_manager.get, data.getlist("samples")))

    minimum_oxonium_threshold = float(data.get("minimum-oxonium-threshold", 0.05))
    workload_size = int(data.get("batch-size", 1000))

    mass_shift_data = list(zip(data.getlist('mass_shift_name'),
                               data.getlist('mass_shift_max_count')))
    mass_shift_data = mass_shift_data[:-1]
    mass_shift_data = [(a, int(b)) for a, b in mass_shift_data]

    for sample_record in sample_records:
        sample_name = sample_record.name
        job_number = g.manager.get_next_job_number()
        name_prefix = "%s at %s (%d)" % (hypothesis_name, sample_name, job_number)
        cleaned_prefix = re.sub(r"[\s\(\)]", "_", name_prefix)
        name_template = g.manager.get_results_path(
            secure_filename(cleaned_prefix) + "_%s.analysis.db")
        storage_path = make_unique_name(name_template)

        task = AnalyzeGlycopeptideSequenceTask(
            hypothesis_record.path, sample_record.path, hypothesis_record.id,
            storage_path, name_prefix,
            grouping_error_tolerance=grouping_tolerance,
            mass_error_tolerance=matching_tolerance,
            msn_mass_error_tolerance=ms2_matching_tolerance,
            psm_fdr_threshold=psm_fdr_threshold,
            minimum_oxonium_threshold=minimum_oxonium_threshold,
            workload_size=workload_size,
            use_peptide_mass_filter=use_peptide_mass_filter,
            mass_shifts=mass_shift_data,
            permute_decoy_glycan_fragments=permute_decoy_glycan_fragments,
            job_name_part=job_number,
            include_rare_signature_ions=include_rare_signature_ions,
            model_retention_time=model_retention_time,
            search_strategy=search_strategy,
            decoy_database_connection=decoy_hypothesis_path,
            decoy_hypothesis_id=decoy_hypothesis_id,
            tandem_scoring_model=tandem_scoring_model
        )
        g.add_task(task)
    return Response("Tasks Scheduled")
Exemple #8
0
def build_glycan_search_space_process():
    data = request.values
    custom_reduction_type = data.get("custom-reduction-type")
    custom_derivatization_type = data.get("custom-derivatization-type")

    has_custom_reduction = custom_reduction_type != ""
    has_custom_derivatization = custom_derivatization_type != ""

    reduction_type = data.get("reduction-type")
    derivatization_type = data.get("derivatization-type")

    hypothesis_name = data.get("hypothesis-name")
    hypothesis_name = g.manager.make_unique_hypothesis_name(hypothesis_name)

    secure_name = secure_filename(hypothesis_name if hypothesis_name is not None else "glycan_database")
    storage_path = g.manager.get_hypothesis_path(re.sub(r"[\s\(\)]", "_", secure_name)) + '_glycan_%s.database'
    storage_path = make_unique_name(storage_path)
    touch_file(storage_path)

    if reduction_type in ("", "native"):
        reduction_type = None
    if derivatization_type in ("", "native"):
        derivatization_type = None

    try:
        reduction_type = validate_reduction(None, reduction_type)
    except Exception:
        g.manager.add_message(Message("Could not validate reduction type %r" % reduction_type, 'update'))
        return Response("Task Not Scheduled")
    try:
        derivatization_type = validate_derivatization(None, derivatization_type)
    except Exception:
        g.manager.add_message(Message("Could not validate derivatization type %r" % derivatization_type, 'update'))
        return Response("Task Not Scheduled")

    selected_method = data.get("selected-method", 'combinatorial')

    # Construct the argument set for a BuildCombinatorialGlycanHypothesis Task.
    # This involves building a StringIO object buffer which contains the user's
    # specified rules.
    if selected_method == "combinatorial":
        comb_monosaccharide_name = data.getlist('monosaccharide_name')[:-1]
        comb_lower_bound = map(intify, data.getlist('monosaccharide_lower_bound')[:-1])
        comb_upper_bound = map(intify, data.getlist('monosaccharide_upper_bound')[:-1])

        comb_monosaccharide_name, comb_lower_bound, comb_upper_bound = remove_empty_rows(
            comb_monosaccharide_name, comb_lower_bound, comb_upper_bound)

        constraint_lhs = data.getlist("left_hand_side")[:-1]
        constraint_op = data.getlist("operator")[:-1]
        constraint_rhs = data.getlist("right_hand_side")[:-1]

        constraints = zip(*remove_empty_rows(constraint_lhs, constraint_op, constraint_rhs))
        rules = zip(comb_monosaccharide_name, comb_lower_bound, comb_upper_bound)
        # File-like object to pass to the task in place of a path to a rules file
        rules_buffer = _serialize_rules_to_buffer(rules, constraints, "generated")

        task = BuildCombinatorialGlycanHypothesis(
            rules_buffer, storage_path,
            reduction=custom_reduction_type if has_custom_reduction else reduction_type,
            derivatization=custom_derivatization_type if has_custom_derivatization else derivatization_type,
            name=hypothesis_name,
            callback=lambda: 0, user=g.user
        )
        g.add_task(task)
    # Construct the argument set for a BuildTextFileGlycanHypothesis Task.
    elif selected_method == "text-file":
        glycan_list_file = request.files["glycan-list-file"]
        secure_glycan_list_file = g.manager.get_temp_path(secure_filename(glycan_list_file.filename))
        glycan_list_file.save(secure_glycan_list_file)
        task = BuildTextFileGlycanHypothesis(
            secure_glycan_list_file,
            storage_path,
            reduction=custom_reduction_type if has_custom_reduction else reduction_type,
            derivatization=custom_derivatization_type if has_custom_derivatization else derivatization_type,
            name=hypothesis_name,
            callback=lambda: 0, user=g.user)
        g.add_task(task)
    elif selected_method == "pregenerated":
        # include_human_n_glycan = data.get("glycomedb-human-n-glycan")
        # include_human_o_glycan = data.get("glycomedb-human-o-glycan")
        # include_mammalian_n_glycan = data.get("glycomedb-mammlian-n-glycan")
        # include_mammalian_o_glycan = data.get("glycomedb-mammlian-o-glycan")

        g.manager.add_message(Message("This method is not enabled at this time", 'update'))
        return Response("Task Not Scheduled")
    # Not yet implemented
    elif selected_method == "merge-hypotheses":
        id_1 = data.get("merged-hypothesis-1", 0)
        id_2 = data.get("merged-hypothesis-2", 0)

        if id_1 == 0 or id_2 == 0 or id_1 == id_2:
            g.add_message(Message("Two different hypotheses must be selected to merge."))
            return Response("Task Not Scheduled")

        rec_1 = g.manager.hypothesis_manager.get(id_1)
        rec_2 = g.manager.hypothesis_manager.get(id_2)

        # g.add_message(Message("Not yet implemented."))
        # return Response("Task Not Scheduled")
        task = MergeGlycanHypotheses(
            g.manager.connection_bridge, [(rec_1.path, rec_1.id), (rec_2.path, rec_2.id)], name=hypothesis_name,
            callback=lambda: 0, user=g.user)
        g.add_task(task)
    else:
        g.add_message(Message("This method is not recognized: \"%s\"" % (selected_method,), 'update'))
        return Response("Task Not Scheduled")

    return Response("Task Scheduled")
def build_glycopeptide_search_space_post():
    values = request.values
    # Separate the JS-based workaround to avoid inappropriate multivalue encoding
    # being parsed incorrectly by Werkzeug
    constant_modifications = values.get("constant_modifications").split(";;;")
    variable_modifications = values.get("variable_modifications").split(";;;")

    constant_modifications = [
        const_mod for const_mod in constant_modifications if const_mod
    ]
    variable_modifications = [
        var_mod for var_mod in variable_modifications if var_mod
    ]

    enzyme = values.getlist("enzyme")
    if len(enzyme) == 1:
        enzyme = enzyme[0]

    hypothesis_name = values.get("hypothesis_name")
    hypothesis_name = g.manager.make_unique_hypothesis_name(hypothesis_name)

    secure_name = secure_filename(hypothesis_name if hypothesis_name
                                  is not None else "glycopeptde_database")
    storage_path = g.manager.get_hypothesis_path(
        re.sub(r"[\s\(\)]", "_", secure_name)) + '_glycopeptde_%s.database'
    storage_path = make_unique_name(storage_path)
    touch_file(storage_path)

    protein_list = request.files["protein-list-file"]
    protein_list_type = values.get("proteomics-file-type")
    glycan_file = request.files.get("glycan-definition-file")
    glycan_database = values.get("glycan-database-source")
    glycan_file_type = values.get("glycans-file-format")

    glycan_options = {}

    max_missed_cleavages = intify(values.get("missed_cleavages"))
    maximum_glycosylation_sites = intify(
        values.get("max_glycosylation_sites", 1))

    secure_protein_list = g.manager.get_temp_path(
        secure_filename(protein_list.filename))
    protein_list.save(secure_protein_list)

    if glycan_database == "" or glycan_database is None:
        glycan_file_type = "text"
        glycan_options["glycan_source_type"] = glycan_file_type

        secure_glycan_file = g.manager.get_temp_path(
            secure_filename(glycan_file.filename))
        glycan_file.save(secure_glycan_file)

        glycan_options["glycomics_source"] = secure_glycan_file
        glycan_options["glycan_source_identifier"] = None
    else:
        option_type, option_id = glycan_database.split(",", 1)

        record = g.manager.hypothesis_manager.get(option_id)
        identifier = record.id

        glycan_options["glycan_source_identifier"] = identifier

        if option_type == "Hypothesis":
            option_type = "hypothesis"
            glycan_options["glycomics_source"] = record.path
        elif option_type == "Analysis":
            option_type = "analysis"
            glycan_options["glycomics_source"] = record.path

        glycan_options["glycan_source_type"] = option_type

    n_workers = g.manager.configuration.get("database_build_worker_count", 4)
    if protein_list_type == "fasta":
        task = BuildGlycopeptideHypothesisFasta(
            storage_path,
            fasta_file=secure_protein_list,
            enzyme=enzyme,
            missed_cleavages=max_missed_cleavages,
            occupied_glycosites=maximum_glycosylation_sites,
            name=hypothesis_name,
            constant_modification=constant_modifications,
            variable_modification=variable_modifications,
            processes=n_workers,
            glycan_source=glycan_options["glycomics_source"],
            glycan_source_type=glycan_options["glycan_source_type"],
            glycan_source_identifier=glycan_options["glycan_source_identifier"]
        )
        g.add_task(task)
    elif protein_list_type == 'mzIdentML':
        protein_names = values.get("protein_names").split(",")
        task = BuildGlycopeptideHypothesisMzId(
            storage_path,
            secure_protein_list,
            name=hypothesis_name,
            occupied_glycosites=maximum_glycosylation_sites,
            target_protein=protein_names,
            processes=n_workers,
            glycan_source=glycan_options['glycomics_source'],
            glycan_source_type=glycan_options['glycan_source_type'],
            glycan_source_identifier=glycan_options["glycan_source_identifier"]
        )
        g.add_task(task)
    else:
        abort(400)
    return Response("Task Scheduled")