def top_level_task(): num_classes = 10 img_rows, img_cols = 28, 28 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print("shape: ", x_train.shape, x_train.__array_interface__["strides"]) # model = Sequential() # model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) # model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) # model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) # model.add(Flatten()) # model.add(Dense(128, activation="relu")) # model.add(Dense(num_classes)) # model.add(Activation("softmax")) layers = [ Conv2D(filters=32, input_shape=(1, 28, 28), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu"), Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu"), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid"), Flatten(), Dense(128, activation="relu"), Dense(num_classes), Activation("softmax") ] model = Sequential(layers) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def top_level_task(): num_classes = 10 img_rows, img_cols = 28, 28 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print("shape: ", x_train.shape, x_train.__array_interface__["strides"]) layers = [ Input(shape=(1, 28, 28), dtype="float32"), Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu"), Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu"), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid"), Flatten(), Dense(128, activation="relu"), Dense(num_classes), Activation("softmax") ] model = Sequential(layers) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(x_train, y_train, epochs=5, callbacks=[ VerifyMetrics(ModelAccuracy.MNIST_CNN), EpochVerifyMetrics(ModelAccuracy.MNIST_CNN) ])
def create_student_model_cnn(teacher_model, num_classes, x_train, y_train): conv1 = teacher_model.get_layer(index=0) c1_kernel, c1_bias = conv1.get_weights(teacher_model.ffmodel) print(c1_kernel.shape, c1_bias.shape) conv2 = teacher_model.get_layer(index=1) c2_kernel, c2_bias = conv2.get_weights(teacher_model.ffmodel) dense1 = teacher_model.get_layer(index=4) d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel) dense2 = teacher_model.get_layer(index=5) d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel) model = Sequential() model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) model.add(Flatten()) model.add(Dense(128, activation="relu", name="dense1")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) conv1s = model.get_layer(index=0) conv2s = model.get_layer(index=1) dense1s = model.get_layer(name="dense1") dense2s = model.get_layer(index=5) conv1s.set_weights(model.ffmodel, c1_kernel, c1_bias) conv2s.set_weights(model.ffmodel, c2_kernel, c2_bias) dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias) dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias) print(model.summary()) model.fit(x_train, y_train, epochs=5, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_CNN), EpochVerifyMetrics(ModelAccuracy.MNIST_CNN)])
def create_teacher_model_cnn(num_classes, x_train, y_train): model = Sequential() model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(x_train, y_train, epochs=5) return model
def top_level_task(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') print("shape: ", x_train.shape) model = Sequential() model.add( Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")) model.add( Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")) model.add( Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")) model.add( Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")) model.add(Flatten()) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.02) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(x_train, y_train, epochs=30, callbacks=[ VerifyMetrics(ModelAccuracy.CIFAR10_CNN), EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN) ])
def top_level_task(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32') print("shape: ", x_train.shape) model = Sequential() model.add(Dense(512, input_shape=(784, ), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def top_level_task(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') print("shape: ", x_train.shape) model1 = Sequential() model1.add(Conv2D(filters=32, input_shape=(3,32,32), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu", name="conv2d_0_0")) model1.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu", name="conv2d_1_0")) print(model1.summary()) model2 = Sequential() model2.add(Conv2D(filters=32, input_shape=(3,32,32), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu", name="conv2d_0_1")) model2.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu", name="conv2d_1_1")) print(model2.summary()) output_tensor = Concatenate(axis=1)([model1.output, model2.output]) output_tensor = MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")(output_tensor) output_tensor = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu", name="conv2d_0_4")(output_tensor) output_tensor = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")(output_tensor) output_tensor = MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = Dense(512, activation="relu")(output_tensor) output_tensor = Dense(num_classes)(output_tensor) output_tensor = Activation("softmax")(output_tensor) model = Model([model1.input[0], model2.input[0]], output_tensor) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit([x_train, x_train], y_train, epochs=40, callbacks=[VerifyMetrics(ModelAccuracy.CIFAR10_CNN), EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)])
def top_level_task(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 #x_train *= 0 #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32') y_train = y_train.astype('int32') print("shape: ", x_train.shape) model = Sequential() model.add(Conv2D(filters=32, input_shape=(3,32,32), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) model.add(Flatten()) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def top_level_task(): max_words = 1000 epochs = 5 print('Loading data...') (x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=max_words, test_split=0.2) print(len(x_train), 'train sequences') print(len(x_test), 'test sequences') num_classes = np.max(y_train) + 1 print(num_classes, 'classes') print('Vectorizing sequence data...') tokenizer = Tokenizer(num_words=max_words) x_train = tokenizer.sequences_to_matrix(x_train, mode='binary') x_test = tokenizer.sequences_to_matrix(x_test, mode='binary') x_train = x_train.astype('float32') print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print('y_train shape:', y_train.shape) model = Sequential() model.add(Input(shape=(max_words, ))) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.Adam(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(x_train, y_train, epochs=epochs, callbacks=[VerifyMetrics(ModelAccuracy.REUTERS_MLP)])
def top_level_task(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print("shape: ", x_train.shape) model = Sequential() d1 = Dense(512, input_shape=(784,), kernel_initializer=GlorotUniform(123), bias_initializer=Zeros()) model.add(d1) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(512, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(x_train, y_train, epochs=20, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)]) model.evaluate(x=x_train, y=y_train)
def create_student_model_cnn(teacher_model, num_classes, x_train, y_train): conv1 = teacher_model.get_layer(0) c1_kernel, c1_bias = conv1.get_weights(teacher_model.ffmodel) print(c1_kernel.shape, c1_bias.shape) conv2 = teacher_model.get_layer(1) c2_kernel, c2_bias = conv2.get_weights(teacher_model.ffmodel) dense1 = teacher_model.get_layer(4) d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel) dense2 = teacher_model.get_layer(5) d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel) model = Sequential() model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid")) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) conv1s = model.get_layer(0) conv2s = model.get_layer(1) dense1s = model.get_layer(4) dense2s = model.get_layer(5) conv1s.set_weights(model.ffmodel, c1_kernel, c1_bias) conv2s.set_weights(model.ffmodel, c2_kernel, c2_bias) dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias) dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias) print(model.summary()) model.fit(x_train, y_train, epochs=1)
def create_teacher_model(num_classes, x_train, y_train): model = Sequential() model.add(Dense(512, input_shape=(784,), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1) dense3 = model.get_layer(2) d3_kernel, d3_bias = dense3.get_weights(model.ffmodel) print(d3_bias) d3_kernel = np.reshape(d3_kernel, (d3_kernel.shape[1], d3_kernel.shape[0])) print(d3_kernel) return model
def create_student_model(teacher_model, num_classes, x_train, y_train): dense1 = teacher_model.get_layer(0) d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel) print(d1_kernel.shape, d1_bias.shape) # print(d1_kernel) # print(d1_bias) dense2 = teacher_model.get_layer(1) d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel) dense3 = teacher_model.get_layer(2) d3_kernel, d3_bias = dense3.get_weights(teacher_model.ffmodel) model = Sequential() model.add(Dense(512, input_shape=(784,), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) dense1s = model.get_layer(0) dense2s = model.get_layer(1) dense3s = model.get_layer(2) dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias) dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias) dense3s.set_weights(model.ffmodel, d3_kernel, d3_bias) d3_kernel, d3_bias = dense3s.get_weights(model.ffmodel) print(d3_kernel) print(d3_bias) model.fit(x_train, y_train, epochs=1)
def create_student_model_mlp(teacher_model, num_classes, x_train, y_train): dense1 = teacher_model.get_layer(index=0) d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel) print(d1_kernel.shape, d1_bias.shape) dense2 = teacher_model.get_layer(index=1) d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel) dense3 = teacher_model.get_layer(index=2) d3_kernel, d3_bias = dense3.get_weights(teacher_model.ffmodel) model = Sequential() model.add(Dense(512, input_shape=(784, ), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) dense1s = model.get_layer(index=0) dense2s = model.get_layer(index=1) dense3s = model.get_layer(index=2) dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias) dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias) dense3s.set_weights(model.ffmodel, d3_kernel, d3_bias) d3_kernel, d3_bias = dense3s.get_weights(model.ffmodel) print(d3_kernel) print(d3_bias) model.fit(x_train, y_train, epochs=5, callbacks=[ VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP) ])
def create_teacher_model_mlp(num_classes, x_train, y_train): model = Sequential() model.add(Dense(512, input_shape=(784, ), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) model.fit(x_train, y_train, epochs=1) dense3 = model.get_layer(index=2) d3_kernel, d3_bias = dense3.get_weights(model.ffmodel) print(d3_bias) d3_kernel = np.reshape(d3_kernel, (d3_kernel.shape[1], d3_kernel.shape[0])) print(d3_kernel) return model
def top_level_task(): max_words = 1000 epochs = 5 print('Loading data...') (x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=max_words, test_split=0.2) print(len(x_train), 'train sequences') print(len(x_test), 'test sequences') num_classes = np.max(y_train) + 1 print(num_classes, 'classes') print('Vectorizing sequence data...') tokenizer = Tokenizer(num_words=max_words) x_train = tokenizer.sequences_to_matrix(x_train, mode='binary') x_test = tokenizer.sequences_to_matrix(x_test, mode='binary') x_train = x_train.astype('float32') print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) print('y_train shape:', y_train.shape) model = Sequential() model.add(Dense(512, input_shape=(max_words, ), activation="relu")) model.add(Dense(num_classes)) model.add(Activation("softmax")) opt = flexflow.keras.optimizers.Adam(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=epochs)