Exemple #1
0
def top_level_task():
    ffconfig = FFConfig()
    print("Python API batchSize(%d) workersPerNodes(%d) numNodes(%d)" %
          (ffconfig.batch_size, ffconfig.workers_per_node, ffconfig.num_nodes))
    ffmodel = FFModel(ffconfig)

    dims = [ffconfig.batch_size, 784]
    input_tensor = ffmodel.create_tensor(dims, DataType.DT_FLOAT)

    num_samples = 60000

    output_tensors = PyTorchModel.file_to_ff("mlp.ff", ffmodel, [input_tensor])

    ffoptimizer = SGDOptimizer(ffmodel, 0.01)
    ffmodel.optimizer = ffoptimizer
    ffmodel.compile(loss_type=LossType.LOSS_SPARSE_CATEGORICAL_CROSSENTROPY,
                    metrics=[
                        MetricsType.METRICS_ACCURACY,
                        MetricsType.METRICS_SPARSE_CATEGORICAL_CROSSENTROPY
                    ])
    label_tensor = ffmodel.label_tensor

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    print(x_train.shape)
    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))

    dataloader_input = ffmodel.create_data_loader(input_tensor, x_train)
    dataloader_label = ffmodel.create_data_loader(label_tensor, y_train)

    ffmodel.init_layers()

    epochs = ffconfig.epochs

    ts_start = ffconfig.get_current_time()

    ffmodel.fit(x=dataloader_input, y=dataloader_label, epochs=epochs)

    ts_end = ffconfig.get_current_time()
    run_time = 1e-6 * (ts_end - ts_start)
    print("epochs %d, ELAPSED TIME = %.4fs, THROUGHPUT = %.2f samples/s\n" %
          (epochs, run_time, num_samples * epochs / run_time))
Exemple #2
0
def top_level_task():
    ffconfig = FFConfig()
    alexnetconfig = NetConfig()
    print(alexnetconfig.dataset_path)
    print("Python API batchSize(%d) workersPerNodes(%d) numNodes(%d)" %
          (ffconfig.batch_size, ffconfig.workers_per_node, ffconfig.num_nodes))
    ffmodel = FFModel(ffconfig)

    dims_input = [ffconfig.batch_size, 3, 224, 224]
    input = ffmodel.create_tensor(dims_input, DataType.DT_FLOAT)

    output_tensors = PyTorchModel.file_to_ff("resnet18.ff", ffmodel, [input])
    t = ffmodel.softmax(output_tensors[0])

    ffoptimizer = SGDOptimizer(ffmodel, 0.01)
    ffmodel.optimizer = ffoptimizer
    ffmodel.compile(loss_type=LossType.LOSS_SPARSE_CATEGORICAL_CROSSENTROPY,
                    metrics=[
                        MetricsType.METRICS_ACCURACY,
                        MetricsType.METRICS_SPARSE_CATEGORICAL_CROSSENTROPY
                    ])
    label = ffmodel.label_tensor

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    full_input_np = np.zeros((num_samples, 3, 224, 224), dtype=np.float32)

    for i in range(0, num_samples):
        image = x_train[i, :, :, :]
        image = image.transpose(1, 2, 0)
        pil_image = Image.fromarray(image)
        pil_image = pil_image.resize((224, 224), Image.NEAREST)
        image = np.array(pil_image, dtype=np.float32)
        image = image.transpose(2, 0, 1)
        full_input_np[i, :, :, :] = image

    full_input_np /= 255

    y_train = y_train.astype('int32')
    full_label_np = y_train

    dataloader_input = ffmodel.create_data_loader(input, full_input_np)
    dataloader_label = ffmodel.create_data_loader(label, full_label_np)

    num_samples = dataloader_input.num_samples
    assert dataloader_input.num_samples == dataloader_label.num_samples

    ffmodel.init_layers()

    epochs = ffconfig.epochs

    ts_start = ffconfig.get_current_time()

    #ffmodel.fit(x=dataloader_input, y=dataloader_label, epochs=epochs)
    ffmodel.eval(x=dataloader_input, y=dataloader_label)

    ts_end = ffconfig.get_current_time()
    run_time = 1e-6 * (ts_end - ts_start)
    print("epochs %d, ELAPSED TIME = %.4fs, THROUGHPUT = %.2f samples/s\n" %
          (epochs, run_time, num_samples * epochs / run_time))