Exemple #1
0
def test_find_and_capture_lepton():
    camera = Lepton()
    image = camera.grab()

    assert image is not None
    assert len(image.shape) == 2
    assert image.dtype == 'uint16'

    camera.close()
        xx2 = data.bounding_poly.vertices[2].x
        yy2 = data.bounding_poly.vertices[2].y + 20
        if xx1 > (x1 + x2) // 2 or xx2 > (
                x1 + x2) // 2:  # 이름표가 오른쪽 가슴에 있으므로 얼굴 왼쪽은 무시함
            continue
        for x in data.description:
            if ord('가') <= ord(x) <= ord('힣'):  # 한글인 경우 Final_Text에 추가
                # cv2.rectangle(result_img, pt1=(xx1, yy1), pt2=(xx2, yy2), thickness=7, color=color,
                #              lineType=cv2.LINE_AA)
                Final_Text += x
    return Final_Text


while cap.isOpened():
    ret, img = cap.read()
    thermal_image_data = thermal_camera.grab()
    if not ret:
        break
    # Optional step 영상이 돌려져 있으면 돌리기
    img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
    h, w = img.shape[:2]

    blob = cv2.dnn.blobFromImage(img,
                                 scalefactor=1.,
                                 size=(300, 300),
                                 mean=(104., 177., 123.))
    # Preprocessing. OpenCV의 FaceNet에서 학습시킨대로 Param값을 넣어줌. DNN이 사용하는 형태로 이미지 변환
    # cv2.dnn.blobFromImage함수가 하는 일은 1. Mean subtraction (평균 빼기) / 2.Scaling (이미지 사이즈 바꾸기) / 3.And optionally channel swapping (옵션, 이미지 채널 바꾸기)
    # (104.0,177.0, 123.0)는 mean subtraction의 경험적 최적값. 그럼 mean subtraction이란 RGB값의 일부를 제외해서 dnn이 분석하기 쉽게 단순화해주는 것.
    # (300,300) : dnn모듈이 CNN으로 처리하기 좋은 이미지 사이즈, 모델이 300,300으로 고정
Exemple #3
0
import numpy as np
from flirpy.camera.lepton import Lepton
camera = Lepton()
image = camera.grab(0)
print(image)
camera.close()
Exemple #4
0
from flirpy.camera.lepton import Lepton

cam = Lepton()
image = cam.grab()
print(image)
print(cam.frame_count)
print(cam.frame_mean)
print(cam.ffc_temp_k)
print(cam.fpa_temp_k)
cam.close()
Exemple #5
0
def main():

    tDetector = TensoflowFaceDector(PATH_TO_CKPT)
    dlib_landmarks = dlib.shape_predictor(DLIB_LANDMARKS_MODEL)

    fov_rgb = 60
    fov_thermal = 71
    fov_offset = 0  #0.055
    fov_correction = math.tan(math.radians(fov_rgb / 2)) / math.tan(
        math.radians(fov_thermal / 2))
    print(fov_correction)

    # fov_correction = fov_rgb/fov_thermal + fov_offset
    rgb_camera = cv2.VideoCapture(2)
    rgb_camera.set(cv2.CAP_PROP_FPS, 8)
    rgb_fps = rgb_camera.get(cv2.CAP_PROP_FPS)

    # Check if camera opened successfully
    if (rgb_camera.isOpened() == False):
        print("Unable to read camera feed")

    # Default resolutions of the frame are obtained.The default resolutions are system dependent.
    # We convert the resolutions from float to integer.
    frame_width = int(rgb_camera.get(3))
    frame_height = int(rgb_camera.get(4))

    output_vid = cv2.VideoWriter('thermal7.avi',
                                 cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
                                 10, (frame_width * 2, frame_height))

    # print("RGB FPS: {:.2f}".format(rgb_fps))

    thermal_camera = Lepton()
    thermal_width, thermal_height = 160, 120
    corrected_thermal_width = thermal_width * fov_correction
    corrected_thermal_height = thermal_height * fov_correction
    interval, count = 0, 0

    cx_thermal, cy_thermal = int(thermal_width / 2), int(thermal_height / 2)

    radius = 1
    roi = 5

    x1 = cx_thermal - roi
    x2 = cx_thermal + roi
    y1 = cy_thermal - roi
    y2 = cy_thermal + roi

    x1_crop = cx_thermal - int(corrected_thermal_width / 2)
    y1_crop = cy_thermal - int(corrected_thermal_height / 2)
    x2_crop = cx_thermal + int(corrected_thermal_width / 2)
    y2_crop = cy_thermal + int(corrected_thermal_height / 2)

    cx_corrected = int((x1_crop + x2_crop) / 2)
    cy_corrected = int((y1_crop + y2_crop) / 2)

    left_offset = 25  #+20
    right_offset = 25  #-35
    top_offset = 12  #20
    bottom_offset = 12  #-20

    cx_rgb, cy_rgb = int(frame_width / 2), int(frame_height / 2)

    pts_src = np.array([[179, 229], [346, 224], [513, 215], [556, 172],
                        [78, 198]])
    pts_dst = np.array([[889 - 640, 203], [1018 - 640, 204], [1145 - 640, 201],
                        [1175 - 640, 174], [818 - 640, 179]])

    # print('Calculating homographic matrix')
    # H, status = cv2.findHomography(pts_src, pts_dst)

    while True:
        t1 = time.time()

        # ********** THERMAL CAMERA *************************************
        raw_image = thermal_camera.grab(device_id=0)
        # raw_image_corrected = raw_image[y1_crop:y2_crop, x1_crop:x2_crop]
        # thermal_image = ((np.subtract(raw_image_corrected, norm_mat_new.transpose() * 7000)/1500)*255).astype(np.uint8)
        thermal_image = ((np.subtract(raw_image, 7000) / 1500) * 255).astype(
            np.uint8)

        #*********** RGB CAMERA PROCESSING *******************************
        ret, rgb_image = rgb_camera.read()
        gray_image = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2GRAY)
        if ret == False:
            break
        rgb_height, rgb_width, rgb_channel = rgb_image.shape
        boxes, scores, classes, num_detections = tDetector.run(rgb_image)
        boxes = np.squeeze(boxes)
        scores = np.squeeze(scores)

        for score, box in zip(scores, boxes):
            if score > 0.5:
                # print('Detecting face ...')
                # ymin, xmin, ymax, xmax = box
                left = int(box[1] * rgb_width)
                top = int(box[0] * rgb_height)
                right = int(box[3] * rgb_width)
                bottom = int(box[2] * rgb_height)

                box_width = right - left
                box_height = bottom - top

                cv2.rectangle(rgb_image, (left, top), (right, bottom),
                              (255, 255, 255), int(round(rgb_height / 150)), 8)
                # cv2.imwrite(filename, image)

                scaled_left = int((left / rgb_width *
                                   corrected_thermal_width) + left_offset)
                scaled_top = int((top / rgb_height *
                                  corrected_thermal_height) + top_offset)
                scaled_right = int((right / rgb_width *
                                    corrected_thermal_width) + right_offset)
                scaled_bottom = int((bottom / rgb_height *
                                     corrected_thermal_height) + bottom_offset)

                # if top > 70 and right:
                #     scaled_left     = int((left+left_offset)/rgb_width * corrected_thermal_width)
                #     scaled_top      = int((top+top_offset)/rgb_height * corrected_thermal_height)
                #     scaled_right    = int((right+right_offset)/rgb_width * corrected_thermal_width)
                #     scaled_bottom   = int((bottom+bottom_offset)/rgb_height * corrected_thermal_height)
                # else:
                #     scaled_left     = int((left+left_offset)/rgb_width * corrected_thermal_width)
                #     scaled_top      = int((top)/rgb_height * corrected_thermal_height)
                #     scaled_right    = int((right+right_offset)/rgb_width * corrected_thermal_width)
                #     scaled_bottom   = int((bottom)/rgb_height * corrected_thermal_height)

                # DLIB FACIAL LANDMARKS
                dlibRect = dlib.rectangle(left, top, right, bottom)
                shape = dlib_landmarks(gray_image, dlibRect)
                # shape = face_utils.shape_to_np(shape)

                # Temperature RoI
                # Case 0: Eye regions
                # leye_x_rgb = shape.part(38).x
                # leye_y_rgb = shape.part(38).y
                # reye_x_rgb = shape.part(40).x
                # reye_y_rgb = shape.part(40).y

                # Case 1: Tear Glands regions
                # RGB Image
                ltear_x1_rgb = shape.part(38).x
                ltear_y1_rgb = shape.part(38).y
                ltear_x2_rgb = shape.part(39).x
                ltear_y2_rgb = shape.part(40).y
                cv2.rectangle(rgb_image, (ltear_x1_rgb, ltear_y1_rgb),
                              (ltear_x2_rgb, ltear_y2_rgb), (0, 255, 0), 2, 2)
                rtear_x1_rgb = shape.part(42).x
                rtear_y1_rgb = shape.part(43).y
                rtear_x2_rgb = shape.part(47).x
                rtear_y2_rgb = shape.part(47).y
                cv2.rectangle(rgb_image, (rtear_x1_rgb, rtear_y1_rgb),
                              (rtear_x2_rgb, rtear_y2_rgb), (0, 255, 0), 2, 2)
                # Thermal Image
                ltear_x1_thermal = int(
                    shape.part(38).x / rgb_width * corrected_thermal_width +
                    left_offset)
                ltear_y1_thermal = int(
                    shape.part(38).y / rgb_height * corrected_thermal_height +
                    top_offset)
                ltear_x2_thermal = int(
                    shape.part(39).x / rgb_width * corrected_thermal_width +
                    right_offset)
                ltear_y2_thermal = int(
                    shape.part(40).y / rgb_height * corrected_thermal_height +
                    bottom_offset)
                cv2.rectangle(thermal_image,
                              (ltear_x1_thermal, ltear_y1_thermal),
                              (ltear_x2_thermal, ltear_y2_thermal),
                              (0, 255, 0), 1, 1)
                rtear_x1_thermal = int(
                    shape.part(42).x / rgb_width * corrected_thermal_width +
                    left_offset)
                rtear_y1_thermal = int(
                    shape.part(43).y / rgb_height * corrected_thermal_height +
                    top_offset)
                rtear_x2_thermal = int(
                    shape.part(47).x / rgb_width * corrected_thermal_width +
                    right_offset)
                rtear_y2_thermal = int(
                    shape.part(47).y / rgb_height * corrected_thermal_height +
                    bottom_offset)
                cv2.rectangle(thermal_image,
                              (rtear_x1_thermal, rtear_y1_thermal),
                              (rtear_x2_thermal, rtear_y2_thermal),
                              (0, 255, 0), 1, 1)

                # Case 2: Inside mouth region
                mouth_x1_rgb = shape.part(48).x
                mouth_y1_rgb = shape.part(50).y
                mouth_x2_rgb = shape.part(54).x
                mouth_y2_rgb = shape.part(57).y
                cv2.rectangle(rgb_image, (mouth_x1_rgb, mouth_y1_rgb),
                              (mouth_x2_rgb, mouth_y2_rgb), (0, 255, 0), 2, 2)
                # Thermal Image
                mouth_x1_thermal = int(
                    shape.part(48).x / rgb_width * corrected_thermal_width +
                    left_offset)
                mouth_y1_thermal = int(
                    shape.part(50).y / rgb_height * corrected_thermal_height +
                    top_offset)
                mouth_x2_thermal = int(
                    shape.part(54).x / rgb_width * corrected_thermal_width +
                    right_offset)
                mouth_y2_thermal = int(
                    shape.part(57).y / rgb_height * corrected_thermal_height +
                    bottom_offset)
                cv2.rectangle(thermal_image,
                              (mouth_x1_thermal, mouth_y1_thermal),
                              (mouth_x2_thermal, mouth_y2_thermal),
                              (0, 255, 0), 1, 1)

                # Case 3: Forehead regions
                # forehead_height = shape.part(19).y - top
                # RGB IMAGE
                forehead_x1_rgb = shape.part(19).x
                forehead_y1_rgb = shape.part(19).y
                forehead_x2_rgb = shape.part(24).x
                forehead_y2_rgb = shape.part(24).y
                cv2.rectangle(rgb_image, (forehead_x1_rgb, top),
                              (forehead_x2_rgb, forehead_y2_rgb), (0, 255, 0),
                              2, 2)
                # Thermal Image
                forehead_x1_thermal = int(
                    shape.part(19).x / rgb_width * corrected_thermal_width +
                    left_offset)
                forehead_y1_thermal = int(
                    shape.part(19).y / rgb_height * corrected_thermal_height +
                    top_offset)
                forehead_x2_thermal = int(
                    shape.part(24).x / rgb_width * corrected_thermal_width +
                    right_offset)
                forehead_y2_thermal = int(
                    shape.part(24).y / rgb_height * corrected_thermal_height +
                    bottom_offset)
                cv2.rectangle(thermal_image, (forehead_x1_thermal, scaled_top),
                              (forehead_x2_thermal, forehead_y2_thermal),
                              (0, 255, 0), 1, 1)

                # cv2.circle(rgb_image, (leye_x_rgb, leye_y_rgb), 1, (0,255,0), 2)
                # cv2.circle(rgb_image, (reye_x_rgb, reye_y_rgb), 1, (0,255,0), 2)

                # leye_x_thermal = int(leye_x_rgb/rgb_width * corrected_thermal_width)
                # leye_y_thermal = int(leye_y_rgb/rgb_height * corrected_thermal_height)
                # reye_x_thermal = int(reye_x_rgb/rgb_width * corrected_thermal_width)
                # reye_y_thermal = int(reye_y_rgb/rgb_height * corrected_thermal_height)

                # cv2.circle(thermal_image, (leye_x_thermal, leye_y_thermal), 1, (0,255,0), -1)
                # cv2.circle(thermal_image, (reye_x_thermal, reye_y_thermal), 1, (0,255,0), -1)

                # for i in range(67):
                # 	# landmarks in rgb image
                #     cv2.circle(rgb_image, (shape.part(i).x, shape.part(i).y), 1, (0,0,255), 2)
                #     # landmarks in thermal image
                #     cv2.circle(thermal_image, (int((shape.part(i).x)/rgb_width*corrected_thermal_width+left_offset),
                #     	int((shape.part(i).y)/rgb_height*corrected_thermal_height+top_offset)), 1, (0,0,255), 1)

                # cv2.imshow('test_image', rgb_image)

                # left_top = H.dot(np.array([[left], [top], [1]]))
                # right_bottom = H.dot(np.array([[right], [bottom], [1]]))

                # x1, y1 = int(left_top[0][0]), int(left_top[1][0])
                # x2, y2 = int(right_bottom[0][0]), int(right_bottom[1][0])

                #************* TEMPERTURE PROCESSING **************************
                # calculate temperature only at RoI
                # Case 0: Entire Face
                # roi_crop = raw_image[scaled_top:scaled_bottom,scaled_left:scaled_right]
                # Case 1: Mouth inside
                roi_crop = raw_image[mouth_y1_thermal:mouth_y2_thermal,
                                     mouth_x1_thermal:mouth_x2_thermal]
                # Case 2: Forehead
                # roi_crop = raw_image[scaled_top:forehead_y2_thermal,forehead_x1_thermal:forehead_x2_thermal]

                avg_read = np.mean(roi_crop.flatten())
                min_read = np.min(roi_crop.flatten())
                max_read = np.max(roi_crop.flatten())

                # Formula with average reading - (taking all data)-->R2=99.55
                # temp_degF = 0.096156 * avg_read - 675.106714
                # Formula with average reading - (taking selected data)-->R2=99.74%
                temp_degF = 0.09745 * avg_read - 685.80252
                # Formula with maximum reading - (taking selected data)-->R2=99.54%
                # temp_degF = 0.0931129 * max_read - 652.367
                temp_degC = (temp_degF - 32) * 5 / 9 - 3

                # cv2.rectangle(thermal_image, (x1, y1),(x2, y2),(0, 0, 255), int(round(thermal_height/150)), 1)
                cv2.rectangle(thermal_image, (scaled_left, scaled_top),
                              (scaled_right, scaled_bottom), (255, 255, 255),
                              int(round(thermal_height / 150)), 1)
                cv2.putText(thermal_image,
                            r'Temp: {:.2f} deg C'.format(temp_degC),
                            (scaled_left + 2, scaled_top - 5),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.2, (0, 0, 255), 1,
                            cv2.LINE_AA)
            # else:
            # print('Not detecting face...')

        t2 = time.time()
        interval += (t2 - t1)

        # print('Average temperature: {:.2f}'.format(temp_degF))

        # ************** Usuage: CAMERA CALIBRATION *****************
        # if count==0 or interval>= 120:
        #   os.system('spd-say "Next Reading"')
        #   roi_crop = image[y1:y2, x1:x2]
        #   avg_read = np.mean(roi_crop.flatten())
        #   min_read = np.min(roi_crop.flatten())
        #   max_read = np.max(roi_crop.flatten())
        #   # data = roi_crop.flatten().tolist()
        #   # mode_read = max(set(data), key=data.count)
        #   print("Iteration: {}".format(count))
        #   print('Average value: {:.2f}'.format(avg_read))
        #   print('Minimum value: {}'.format(min_read))
        #   print('Maximum value: {}'.format(max_read))
        #   print('---------------------------------')
        #   # print('Mode value: {}'.format(mode_read))
        #   interval = 0
        #   count += 1

        fps = (1 / (t2 - t1))
        # cv2.circle(rgb_image, (cx_rgb, cy_rgb), 5, (255,0,0), -1)
        # cv2.circle(thermal_image, (cx_corrected, cy_corrected), 1, (0,255,0), -1)
        # cv2.circle(thermal_image, (int(cx_rgb/rgb_width*corrected_thermal_width),
        # 	int(cy_rgb/rgb_height*corrected_thermal_height)), 1, (255,0,0), -1)

        # print("FPS: {:.2f}".format(fps))
        # cv2.circle(thermal_image, (cx, cy), 1, (0,0,0), -1)
        # cv2.rectangle(thermal_image, (x1,y1), (x2,y2), (255,255,255), 1)
        # cv2.putText(thermal_image, 'FPS: {:.2f}'.format(fps), (3,10),
        #     cv2.FONT_HERSHEY_SIMPLEX, 0.2, (0,0,255), 1, cv2.LINE_AA)

        thermal_image = cv2.applyColorMap(thermal_image, cv2.COLORMAP_HOT)
        # print(heatmap.shape)

        disp_window = np.hstack([
            cv2.resize(rgb_image, (640, 480)),
            cv2.resize(thermal_image, (640, 480))
        ])

        # display rgb image
        cv2.imshow('Temperature Detector', disp_window)
        # cv2.imshow('Temperature Detector1', thermal_image)
        # cv2.imshow('Temperature Detector2', cv2.resize(rgb_image, (640, 480)))
        output_vid.write(disp_window)

        k = cv2.waitKey(1) & 0xff
        if k == ord('q') or k == 27:
            break
            thermal_camera.close()

    # close the camera
    thermal_camera.close()
    output_vid.release()
    rgb_camera.release()
    cv2.destroyAllWindows()
    #Cannot you cv2.resize on raspberry pi 3b+. Not enough processing power.
    #data = cv2.resize(data[:,:], (640, 480))
    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(data)
    img = cv2.LUT(raw_to_8bit(data), generate_colour_map())
    #display_temperature only works if cv2.resize is used
    #display_temperatureK(img, minVal, minLoc, (255, 0, 0)) #displays min temp at min temp location on image
    #display_temperatureK(img, maxVal, maxLoc, (0, 0, 255)) #displays max temp at max temp location on image
    #display_temperatureK(img, minVal, (10,55), (255, 0, 0)) #display in top left corner the min temp
    #display_temperatureK(img, maxVal, (10,25), (0, 0, 255)) #display in top left corner the max temp
    return img

while(True): 
      
    # Capture the video frame 
    # by frame 
    frame = vid.grab() 
#    frame=    threshold_slow(frame)
    # Display the resulting frame
    print(frame.shape) 
    cv2.imshow('frame', frame) 
    # the 'q' button is set as the 
    # quitting button you may use any 
    # desired button of your choice 
    if cv2.waitKey(1) & 0xFF == ord('q'): 
        break
  
# After the loop release the cap object 
vid.close() 
# Destroy all the windows 
cv2.destroyAllWindows()