Exemple #1
0
def download_dataset_to_file(dataset_id):
    """
    Used to retrieve a data set either from Orion or from the local machine
    """
    if in_orion():
        if dataset_id in download_cache:
            return download_cache[dataset_id]
        if os.path.isfile(dataset_id):
            download_cache[dataset_id] = dataset_id
            return dataset_id
        tmp = NamedTemporaryFile(suffix=".oeb.gz", delete=False)
        stream = StreamingDataset(dataset_id, input_format=".oeb.gz")
        stream.download_to_file(tmp.name)
        download_cache[dataset_id] = tmp.name
        return tmp.name
    else:
        return dataset_id
Exemple #2
0
    def dump(cls, molecule, tags=None, outfname=None, tarxz=True):
        """ Writes the data attached to OEMol to files on disc.
        Create a tar archive (xz-compressed) of files."""

        tag_data = {}
        totar = []
        if tags is None:
            tag_data = cls.unpack(molecule)
        else:
            tag_data = cls.unpack(molecule, tags=tags)
        if outfname is None:
            raise Exception('Require an output file name.')

        # Dump the SD Data
        sd_data = cls.checkSDData(molecule)
        sdtxt = outfname + '-sd.txt'
        with open(sdtxt, 'w') as f:
            for k, v in sd_data.items():
                f.write('{} : {}\n'.format(k, v))
        totar.append(sdtxt)

        print('Dumping data from: %s' % outfname)
        for tag, data in tag_data.items():
            if isinstance(data, parmed.structure.Structure):
                pdbfname = outfname + '.pdb'
                print("\tStructure to %s" % pdbfname)
                data.save(pdbfname, overwrite=True)
                totar.append(pdbfname)
            if isinstance(data, openmm.openmm.State):
                statefname = outfname + '-state.xml'
                print('\tState to %s' % statefname)
                with open(statefname, 'w') as f:
                    f.write(openmm.XmlSerializer.serialize(data))
                if tarxz:
                    totar.append(statefname)
            if isinstance(data, io.StringIO):
                enelog = outfname + '.log'
                print('\tLog to %s' % enelog)
                with open(enelog, 'w') as f:
                    f.write(data.getvalue())
                if tarxz:
                    totar.append(enelog)
        if tarxz:
            tarname = outfname + '.tar.xz'
            print('Creating tarxz file: {}'.format(tarname))

            trajfname = outfname + '.nc'
            if os.path.isfile(trajfname):
                totar.append(trajfname)
                print('Adding {} to {}'.format(trajfname, tarname))
            else:
                print('Could not find {}'.format(trajfname))

            tar = tarfile.open(tarname, "w:xz")
            for name in totar:
                tar.add(name)
            tar.close()

            if in_orion():
                # MUST upload tar file directly back to Orion or they disappear.
                upload_file(tarname, tarname, tags=['TAR'])
            # Clean up files that have been added to tar.
            cleanup(totar)
Exemple #3
0
class Fields:

    # The LigInitialRecord Field is for the initial ligand record read in at the start
    ligInit_rec = OEField("LigInitial", Types.Record, meta=_metaHidden)

    # The Title field is a string name for the flask which used to compose file names
    title = OEField("Title_OPLMD", Types.String, meta=_metaIDHidden)

    # The flaskid field is a unique integer for each flask (final system for simulation)
    flaskid = OEField("FlaskID_OPLMD", Types.Int, meta=_metaIDHidden)

    # The ligid field is a unique integer used to keep track of the ligand input order
    ligid = OEField("LigID_OPLMD", Types.Int, meta=_metaIDHidden)

    # The ConfID field is used to identify a particular conformer
    confid = OEField("ConfID_OPLMD", Types.Int, meta=_metaIDHidden)

    # The Ligand field should be used to save in a record a ligand as an OEMolecule
    ligand = OEField(
        "Ligand_OPLMD",
        Types.Chem.Mol,
        meta=OEFieldMeta(
            options=[Meta.Hints.Chem.Ligand, Meta.Display.Hidden]))

    # The ligand name
    ligand_name = OEField("Ligand_name_OPLMD", Types.String, meta=_metaHidden)

    # The protein field should be used to save in a record a Protein as an OEMolecule
    protein = OEField("Protein_OPLMD", Types.Chem.Mol, meta=_metaProtHidden)

    # The protein name
    protein_name = OEField("Protein_name_OPLMD",
                           Types.String,
                           meta=_metaHidden)

    # The super-molecule for the entire flask (ie the final system for simulation)
    flask = OEField("Flask_OPLMD", Types.Chem.Mol, meta=_metaHidden)

    # Primary Molecule
    primary_molecule = OEPrimaryMolField()

    # Parmed Structure, Trajectory, MDData and Protein trajectory conformers Fields
    if in_orion():
        pmd_structure = OEField('Structure_Parmed_OPLMD',
                                Types.Int,
                                meta=_metaHidden)
        trajectory = OEField("Trajectory_OPLMD", Types.Int, meta=_metaHidden)
        mddata = OEField("MDData_OPLMD", Types.Int, meta=_metaHidden)
        protein_traj_confs = OEField("ProtTraj_OPLMD",
                                     Types.Int,
                                     meta=_metaHidden)
    else:
        pmd_structure = OEField('Structure_Parmed_OPLMD',
                                ParmedData,
                                meta=_metaHidden)
        trajectory = OEField("Trajectory_OPLMD",
                             Types.String,
                             meta=_metaHidden)
        mddata = OEField("MDData_OPLMD", Types.String, meta=_metaHidden)
        protein_traj_confs = OEField("ProtTraj_OPLMD",
                                     Types.Chem.Mol,
                                     meta=_metaHidden)

    # The Stage Name
    stage_name = OEField('Stage_name_OPLMD', Types.String)

    # The Stage Type
    stage_type = OEField('Stage_type_OPLMD', Types.String)

    # Topology Field
    topology = OEField('Topology_OPLMD',
                       Types.Chem.Mol,
                       meta=OEFieldMeta().set_option(
                           Meta.Hints.Chem.PrimaryMol))

    # Log Info
    log_data = OEField('Log_data_OPLMD', Types.String)

    # MD State
    md_state = OEField("MDState_OPLMD", MDStateData)

    # Design Unit Field
    design_unit = OEField('Design_Unit_OPLMD', DesignUnit)

    # Design Unit Field from Spruce
    # design_unit_from_spruce = OEField('du_single', Types.Blob)
    design_unit_from_spruce = OEField('designunit', Types.Chem.DesignUnit)

    # MD Components
    md_components = OEField('MDComponents_OPLMD', MDComponentData)

    # Collection is used to offload data from the record which must be < 100Mb
    collection = OEField("Collection_ID_OPLMD", Types.Int, meta=_metaHidden)

    # Stage list Field
    md_stages = OEField("MDStages_OPLMD", Types.RecordVec, meta=_metaHidden)

    floe_report = OEField('Floe_report_OPLMD', Types.String, meta=_metaHidden)

    floe_report_svg_lig_depiction = OEField("Floe_report_lig_svg_OPLMD",
                                            Types.String,
                                            meta=OEFieldMeta().set_option(
                                                Meta.Hints.Image_SVG))

    floe_report_label = OEField('Floe_report_label_OPLMD',
                                Types.String,
                                meta=_metaHidden)

    floe_report_URL = OEField('Floe_report_URL_OPLMD',
                              Types.String,
                              meta=OEFieldMeta(options=[Meta.Hints.URL]))

    floe_report_collection_id = OEField('Floe_report_ID_OPLMD',
                                        Types.Int,
                                        meta=_metaHidden)

    class Analysis:

        # The poseIdVec vector addresses an input poseid for each traj frame
        poseIdVec = OEField("PoseIdVec", Types.IntVec, meta=_metaHidden)

        # The OETraj Field is for the record containing Traj OEMols and energies
        oetraj_rec = OEField("OETraj", Types.Record, meta=_metaHidden)

        # The TrajIntE Field is for the record containing Traj interaction energies
        oeintE_rec = OEField("TrajIntE", Types.Record, meta=_metaHidden)

        # The TrajIntEDict Field is for the POD Dictionary containing Traj interaction energies
        oeintE_dict = OEField("TrajIntEDict",
                              Types.JSONObject,
                              meta=_metaHidden)

        # The TrajPBSA Field is for the record containing Traj PBSA energies
        oepbsa_rec = OEField("TrajPBSA", Types.Record, meta=_metaHidden)

        # The TrajPBSADict Field is for the POD Dictionary containing Traj PBSA energies
        oepbsa_dict = OEField("TrajPBSADict",
                              Types.JSONObject,
                              meta=_metaHidden)

        # The TrajClus Field is for the record containing Traj ligand clustering results
        oeclus_rec = OEField("TrajClus", Types.Record, meta=_metaHidden)

        # The TrajClusDict Field is for the POD Dictionary containing Traj ligand clustering results
        oeclus_dict = OEField("TrajClusDict",
                              Types.JSONObject,
                              meta=_metaHidden)

        # The ClusPopDict Field is for the POD Dictionary containing conf/cluster population results
        cluspop_dict = OEField("ClusPopDict",
                               Types.JSONObject,
                               meta=_metaHidden)

        # The AnalysesDone Field is for a list of the analyses that have been done
        analysesDone = OEField("AnalysesDone",
                               Types.StringVec,
                               meta=_metaHidden)

        # The Lig_Conf_Data Field is for the record containing Traj conf data for all confs
        oetrajconf_rec = OEField("Lig_Conf_Data",
                                 Types.RecordVec,
                                 meta=_metaHidden)

        # The vector of ligand Traj RMSDs from the initial pose
        lig_traj_rmsd = OEField('LigTrajRMSD',
                                Types.FloatVec,
                                meta=OEFieldMeta().set_option(
                                    Meta.Units.Length.Ang))

        # The mmpbsa Field contains the vector of per-frame mmpbsa values over the whole trajectory
        zapMMPBSA_fld = OEField("OEZap_MMPBSA6_Bind",
                                Types.FloatVec,
                                meta=OEFieldMeta().set_option(
                                    Meta.Units.Energy.kCal))

        # mmpbsa ensemble average over the whole trajectory
        mmpbsa_traj_mean = OEField('MMPBSATrajMean',
                                   Types.Float,
                                   meta=OEFieldMeta().set_option(
                                       Meta.Units.Energy.kCal_per_mol))

        metaMMPBSA_traj_serr = OEFieldMeta().set_option(
            Meta.Units.Energy.kCal_per_mol)
        metaMMPBSA_traj_serr.add_relation(Meta.Relations.ErrorsFor,
                                          mmpbsa_traj_mean)
        mmpbsa_traj_serr = OEField('MMPBSATrajSerr',
                                   Types.Float,
                                   meta=metaMMPBSA_traj_serr)

        # The number of major clusters found
        n_major_clusters = OEField("n major clusters", Types.Int)

        # Trajectory cluster averages and medians of protein and ligand
        ClusLigAvg_fld = OEField('ClusLigAvgMol', Types.Chem.Mol)
        ClusProtAvg_fld = OEField('ClusProtAvgMol', Types.Chem.Mol)
        ClusLigMed_fld = OEField('ClusLigMedMol', Types.Chem.Mol)
        ClusProtMed_fld = OEField('ClusProtMedMol', Types.Chem.Mol)

        max_waters = OEField("MaxWaters_OPLMD", Types.Int, meta=_metaHidden)

        # Free Energy Yank
        # Analysis Fields
        free_energy = OEField('FE_OPLMD',
                              Types.Float,
                              meta=OEFieldMeta().set_option(
                                  Meta.Units.Energy.kCal_per_mol))

        metaFreeEnergy_err = OEFieldMeta().set_option(
            Meta.Units.Energy.kCal_per_mol)
        metaFreeEnergy_err.add_relation(Meta.Relations.ErrorsFor, free_energy)
        free_energy_err = OEField('FE_Error_OPLMD',
                                  Types.Float,
                                  meta=metaFreeEnergy_err)

    class FEC:
        # Free Energy
        free_energy = OEField('FE_OPLMD',
                              Types.Float,
                              meta=OEFieldMeta().set_option(
                                  Meta.Units.Energy.kCal_per_mol))

        metaFreeEnergy_err = OEFieldMeta().set_option(
            Meta.Units.Energy.kCal_per_mol)
        metaFreeEnergy_err.add_relation(Meta.Relations.ErrorsFor, free_energy)
        free_energy_err = OEField('FE_Error_OPLMD',
                                  Types.Float,
                                  meta=metaFreeEnergy_err)

        class RBFEC:
            # Oriented Edge field for relative free energy calculations
            # The first integer of the list is the ligand ID of the starting
            # thermodynamic state and the second the final one
            edgeid = OEField("EdgeID_OPLMD", Types.Int, meta=_metaHidden)
            edge_name = OEField("EdgeName_OPLMD", Types.String)

            # The Thermodynamics leg type is used for Bound and
            # UnBound State run identification
            thd_leg_type = OEField("Thd_Leg_OPLMD",
                                   Types.String,
                                   meta=_metaHidden)

            class NESC:

                state_A = OEField("StateA_OPLMD", Types.Record)
                state_B = OEField("StateB_OPLMD", Types.Record)

                gmx_top = OEField("GMX_Top_OPLMD",
                                  Types.String,
                                  meta=_metaHidden)
                gmx_gro = OEField("GMX_Gro_OPLMD",
                                  Types.String,
                                  meta=_metaHidden)
                work = OEField("GMX_Work_OPLMD",
                               Types.Float,
                               meta=OEFieldMeta().set_option(
                                   Meta.Units.Energy.kJ_per_mol))
                frame_count = OEField("frame_count",
                                      Types.Int,
                                      meta=_metaHidden)

                # The Work record is used to collect the data related to the
                # Work Forward and Reverse for the Bound and Unbound States
                work_rec = OEField("Work_Record_OPLMD", Types.Record)

                # The Relative Binding Affinity record collects data for the
                # different analysis methods used to compute it
                DDG_rec = OEField("DDG_Record_OPLMD", Types.Record)
Exemple #4
0
    def __init__(self, mdstate, parmed_structure, opt):
        super().__init__(mdstate, parmed_structure, opt)

        opt['platform'] = 'Auto'
        opt['cuda_opencl_precision'] = 'mixed'

        topology = parmed_structure.topology
        positions = mdstate.get_positions()
        velocities = mdstate.get_velocities()
        box = mdstate.get_box_vectors()

        opt['omm_log_fn'] = os.path.join(opt['out_directory'], 'trajectory.log')
        opt['omm_trj_fn'] = os.path.join(opt['out_directory'], 'trajectory.h5')

        # Time step in ps
        if opt['hmr']:
            self.stepLen = 0.004 * unit.picoseconds
            opt['Logger'].info("Hydrogen Mass repartitioning is On")
        else:
            self.stepLen = 0.002 * unit.picoseconds

        opt['timestep'] = self.stepLen

        # Centering the system to the OpenMM Unit Cell
        if opt['center'] and box is not None:
            opt['Logger'].info("[{}] Centering is On".format(opt['CubeTitle']))
            # Numpy array in A
            coords = parmed_structure.coordinates
            # System Center of Geometry
            cog = np.mean(coords, axis=0)
            # System box vectors
            box_v = parmed_structure.box_vectors.in_units_of(unit.angstrom) / unit.angstrom
            box_v = np.array([box_v[0][0], box_v[1][1], box_v[2][2]])
            # Translation vector
            delta = box_v / 2 - cog
            # New Coordinates
            new_coords = coords + delta
            parmed_structure.coordinates = new_coords
            positions = parmed_structure.positions
            mdstate.set_positions(positions)

        # Constraint type
        constraints = md_keys_converter[MDEngines.OpenMM]['constraints'][opt['constraints']]

        # OpenMM system
        if box is not None:
            box_v = parmed_structure.box_vectors.value_in_unit(unit.angstrom)
            box_v = np.array([box_v[0][0], box_v[1][1], box_v[2][2]])

            min_box = np.min(box_v)

            threshold = (min_box / 2.0) * 0.85

            if opt['nonbondedCutoff'] < threshold:
                cutoff_distance = opt['nonbondedCutoff'] * unit.angstroms
            else:
                opt['Logger'].warn("[{}] Cutoff Distance too large for the box size. Set the cutoff distance "
                                   "to {} A".format(opt['CubeTitle'], threshold))

                cutoff_distance = threshold * unit.angstroms

            self.system = parmed_structure.createSystem(nonbondedMethod=app.PME,
                                                        nonbondedCutoff=cutoff_distance,
                                                        constraints=eval("app.%s" % constraints),
                                                        removeCMMotion=False,
                                                        hydrogenMass=4.0 * unit.amu if opt['hmr'] else None)
        else:  # Vacuum
            self.system = parmed_structure.createSystem(nonbondedMethod=app.NoCutoff,
                                                        constraints=eval("app.%s" % constraints),
                                                        removeCMMotion=False,
                                                        hydrogenMass=4.0 * unit.amu if opt['hmr'] else None)
        # Add Implicit Solvent Force
        if opt['implicit_solvent'] != 'None':
            opt['Logger'].info("[{}] Implicit Solvent Selected".format(opt['CubeTitle']))

            implicit_force = parmed_structure.omm_gbsa_force(eval("app.%s" % opt['implicit_solvent']),
                                                             temperature=opt['temperature'] * unit.kelvin,
                                                             nonbondedMethod=app.PME,
                                                             nonbondedCutoff=opt['nonbondedCutoff'] * unit.angstroms)
            self.system.addForce(implicit_force)

        # OpenMM Integrator
        integrator = openmm.LangevinIntegrator(opt['temperature'] * unit.kelvin, 1 / unit.picoseconds, self.stepLen)

        if opt['SimType'] == 'npt':
            if box is None:
                raise ValueError("NPT simulation without box vector")

            # Add Force Barostat to the system
            self.system.addForce(
                openmm.MonteCarloBarostat(opt['pressure'] * unit.atmospheres, opt['temperature'] * unit.kelvin, 25))

        # Apply restraints
        if opt['restraints']:
            opt['Logger'].info("[{}] RESTRAINT mask applied to: {}"
                               "\tRestraint weight: {}".format(opt['CubeTitle'],
                                                               opt['restraints'],
                                                               opt['restraintWt'] *
                                                               unit.kilocalories_per_mole / unit.angstroms ** 2))
            # Select atom to restraint
            res_atom_set = oeommutils.select_oemol_atom_idx_by_language(opt['molecule'], mask=opt['restraints'])
            opt['Logger'].info("[{}] Number of restraint atoms: {}".format(opt['CubeTitle'],
                                                                           len(res_atom_set)))
            # define the custom force to restrain atoms to their starting positions
            force_restr = openmm.CustomExternalForce('k_restr*periodicdistance(x, y, z, x0, y0, z0)^2')
            # Add the restraint weight as a global parameter in kcal/mol/A^2
            force_restr.addGlobalParameter("k_restr",
                                           opt['restraintWt'] * unit.kilocalories_per_mole / unit.angstroms ** 2)
            # Define the target xyz coords for the restraint as per-atom (per-particle) parameters
            force_restr.addPerParticleParameter("x0")
            force_restr.addPerParticleParameter("y0")
            force_restr.addPerParticleParameter("z0")

            if opt['restraint_to_reference'] and box is not None:
                opt['Logger'].info("[{}] Restraint to the Reference State Enabled".format(opt['CubeTitle']))
                reference_positions = opt['reference_state'].get_positions()
                coords = np.array(reference_positions.value_in_unit(unit.nanometers))
                # System Center of Geometry
                cog = np.mean(coords, axis=0)

                # System box vectors
                box_v = opt['reference_state'].get_box_vectors().value_in_unit(unit.nanometers)
                box_v = np.array([box_v[0][0], box_v[1][1], box_v[2][2]])

                # Translation vector
                delta = box_v / 2 - cog
                # New Coordinates
                corrected_reference_positions = coords + delta

            for idx in range(0, len(positions)):
                if idx in res_atom_set:
                    if opt['restraint_to_reference']:
                        xyz = corrected_reference_positions[idx]  # nanometers unit
                    else:
                        xyz = positions[idx].in_units_of(unit.nanometers) / unit.nanometers
                    force_restr.addParticle(idx, xyz)

            self.system.addForce(force_restr)

        # Freeze atoms
        if opt['freeze']:
            opt['Logger'].info("[{}] FREEZE mask applied to: {}".format(opt['CubeTitle'],
                                                                        opt['freeze']))

            freeze_atom_set = oeommutils.select_oemol_atom_idx_by_language(opt['molecule'], mask=opt['freeze'])
            opt['Logger'].info("[{}] Number of frozen atoms: {}".format(opt['CubeTitle'],
                                                                        len(freeze_atom_set)))
            # Set atom masses to zero
            for idx in range(0, len(positions)):
                if idx in freeze_atom_set:
                    self.system.setParticleMass(idx, 0.0)

        # Platform Selection
        if opt['platform'] == 'Auto':
            # Select the platform
            for plt_name in ['CUDA', 'OpenCL', 'CPU', 'Reference']:
                try:
                    platform = openmm.Platform_getPlatformByName(plt_name)
                    break
                except:
                    if plt_name == 'Reference':
                        raise ValueError('It was not possible to select any OpenMM Platform')
                    else:
                        pass
            if platform.getName() in ['CUDA', 'OpenCL']:
                for precision in ['mixed', 'single', 'double']:
                    try:
                        # Set platform precision for CUDA or OpenCL
                        properties = {'Precision': precision}

                        if 'gpu_id' in opt and 'OE_VISIBLE_DEVICES' in os.environ and not in_orion():
                            properties['DeviceIndex'] = opt['gpu_id']

                        simulation = app.Simulation(topology, self.system, integrator,
                                                    platform=platform,
                                                    platformProperties=properties)
                        break
                    except:
                        if precision == 'double':
                            raise ValueError('It was not possible to select any Precision '
                                             'for the selected Platform: {}'.format(platform.getName()))
                        else:
                            pass
            else:  # CPU or Reference
                simulation = app.Simulation(topology, self.system, integrator, platform=platform)
        else:  # Not Auto Platform selection
            try:
                platform = openmm.Platform.getPlatformByName(opt['platform'])
            except Exception as e:
                raise ValueError('The selected platform is not supported: {}'.format(str(e)))

            if opt['platform'] in ['CUDA', 'OpenCL']:
                try:
                    # Set platform CUDA or OpenCL precision
                    properties = {'Precision': opt['cuda_opencl_precision']}

                    simulation = app.Simulation(topology, self.system, integrator,
                                                platform=platform,
                                                platformProperties=properties)
                except Exception:
                    raise ValueError('It was not possible to set the {} precision for the {} platform'
                                     .format(opt['cuda_opencl_precision'], opt['platform']))
            else:  # CPU or Reference Platform
                simulation = app.Simulation(topology, self.system, integrator, platform=platform)

        # Set starting positions and velocities
        simulation.context.setPositions(positions)

        # Set Box dimensions
        if box is not None:
            simulation.context.setPeriodicBoxVectors(box[0], box[1], box[2])

        # If the velocities are not present in the Parmed structure
        # new velocity vectors are generated otherwise the system is
        # restarted from the previous State
        if opt['SimType'] in ['nvt', 'npt']:

            if velocities is not None:
                opt['Logger'].info('[{}] RESTARTING simulation from a previous State'.format(opt['CubeTitle']))
                simulation.context.setVelocities(velocities)
            else:
                # Set the velocities drawing from the Boltzmann distribution at the selected temperature
                opt['Logger'].info('[{}] GENERATING a new starting State'.format(opt['CubeTitle']))
                simulation.context.setVelocitiesToTemperature(opt['temperature'] * unit.kelvin)

            # Convert simulation time in steps
            opt['steps'] = int(round(opt['time'] / (self.stepLen.in_units_of(unit.nanoseconds) / unit.nanoseconds)))

            # Set Reporters
            for rep in getReporters(**opt):
                simulation.reporters.append(rep)

        # OpenMM platform information
        mmver = openmm.version.version
        mmplat = simulation.context.getPlatform()

        str_logger = '\n' + '-' * 32 + ' SIMULATION ' + '-' * 32
        str_logger += '\n' + '{:<25} = {:<10}'.format('time step', str(opt['timestep']))

        # Host information
        for k, v in uname()._asdict().items():
            str_logger += "\n{:<25} = {:<10}".format(k, v)
            opt['Logger'].info("[{}] {} : {}".format(opt['CubeTitle'],
                                                     k, v))

        # Platform properties
        for prop in mmplat.getPropertyNames():
            val = mmplat.getPropertyValue(simulation.context, prop)
            str_logger += "\n{:<25} = {:<10}".format(prop, val)
            opt['Logger'].info("[{}] {} : {}".format(opt['CubeTitle'],
                                                     prop, val))

        info = "{:<25} = {:<10}".format("OpenMM Version", mmver)
        opt['Logger'].info("[{}] OpenMM Version : {}".format(opt['CubeTitle'], mmver))
        str_logger += '\n' + info

        info = "{:<25} = {:<10}".format("Platform in use", mmplat.getName())
        opt['Logger'].info("[{}] Platform in use : {}".format(opt['CubeTitle'], mmplat.getName()))
        str_logger += '\n' + info

        self.mdstate = mdstate
        self.parmed_structure = parmed_structure
        self.opt = opt
        self.str_logger = str_logger
        self.omm_simulation = simulation

        return
Exemple #5
0
def _file_processing(**opt):
    """
    This supporting function compresses the produced trajectory
    and supporting files in a .tar file (if required ) and eventually
    uploaded them to Orion. If not .tar file is selected then all the
    generated files are eventually uploaded in Orion

    Parameters
    ----------
    opt: python dictionary
        A dictionary containing all the MD setting info
    """

    # Set the trajectory file name
    if opt['trajectory_filetype'] == 'NetCDF':
        trj_fn = opt['outfname'] +'.nc'
    elif opt['trajectory_filetype'] == 'DCD':
        trj_fn = opt['outfname'] +'.dcd'
    elif opt['trajectory_filetype'] == 'HDF5':
        trj_fn = opt['outfname'] + '.hdf5'
    else:
        oechem.OEThrow.Fatal("The selected trajectory filetype is not supported: {}"
                             .format(opt['trajectory_filetype']))
    # Set .pdb file names
    pdb_fn = opt['outfname'] + '.pdb'
    pdb_order_fn = opt['outfname'] + '_ordering_test' + '.pdb'
    log_fn = opt['outfname'] + '.log'

    # List all the file names
    fnames = [trj_fn, pdb_fn, pdb_order_fn, log_fn]

    ex_files = []

    # Check which file names are actually produced files
    for fn in fnames:
        if os.path.isfile(fn):
            ex_files.append(fn)

    # Tar the outputted files if required
    if opt['tar']:

        tarname = opt['outfname'] + '.tar'

        opt['Logger'].info('Creating tar file: {}'.format(tarname))

        tar = tarfile.open(tarname, "w")

        for name in ex_files:
            opt['Logger'].info('Adding {} to {}'.format(name, tarname))
            tar.add(name)
        tar.close()

        opt['molecule'].SetData(oechem.OEGetTag("Tar_fname"), tarname)

        if in_orion():
            upload_file(tarname, tarname, tags=['TRJ_INFO'])

        # Clean up files that have been added to tar.
        for tmp in ex_files:
            try:
                os.remove(tmp)
            except:
                pass
    else:  # If not .tar file is required the files are eventually uploaded in Orion
        if in_orion():
            for fn in ex_files:
                upload_file(fn, fn, tags=['TRJ_INFO'])

    return