import flor log = flor.log @flor.track def fib(idx): fib = {} fib[log.param(0)] = log.metric(0) fib[log.param(1)] = log.metric(1) fib[log.param(2)] = log.metric(2) for i in range(3, idx + 1): fib[log.param(i)] = log.metric(fib[i - 1] + fib[i - 2]) with flor.Context('fib'): fib(5)
optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: log.metric(epoch) log.metric(i) log.metric(loss.item()) # Test the model # In test phase, we don't need to compute gradients (for memory efficiency) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 28 * 28).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * (correct / total) log.metric(acc) print('Accuracy of the network on the 10000 test images: {} %'.format(acc)) with flor.Context('pytorch_demo_nn'): main()
import flor from sklearn import datasets from sklearn import svm from sklearn.model_selection import train_test_split log = flor.log @flor.track def fit_and_score_model(gamma, C, test_size, random_state): iris = datasets.load_iris() X_tr, X_te, y_tr, y_te = train_test_split(iris.data, iris.target, test_size=log.param(test_size), random_state=log.param(random_state)) clf = svm.SVC(gamma=log.param(gamma), C=log.param(C)) clf.fit(X_tr, y_tr) score = log.metric(clf.score(X_te, y_te)) with flor.Context('iris'): fit_and_score_model(gamma=0.001, C=100.0, test_size=0.15, random_state=430)
@flor.track def main(x, y, z): # Load the Data movie_reviews = pd.read_json(log.read('data.json')) movie_reviews['rating'] = movie_reviews['rating'].map(lambda x: 0 if x < z else 1) # Do train/test split- X_tr, X_te, y_tr, y_te = train_test_split(movie_reviews['text'], movie_reviews['rating'], test_size=log.param(x), random_state=log.param(y)) # Vectorize the English sentences vectorizer = TfidfVectorizer() vectorizer.fit(X_tr) X_tr = vectorizer.transform(X_tr) X_te = vectorizer.transform(X_te) # Fit the stateful for i in [1, 5]: clf = train_model(i, X_tr, y_tr) test_model(clf, X_te, y_te) the_answer_to_everything = log.param(42) with flor.Context('basic'): main(0.2, 92, 5)