Exemple #1
0
def nbody_prototype(mesh,
                    infield=False,
                    nc=FLAGS.nc,
                    bs=FLAGS.box_size,
                    batch_size=FLAGS.batch_size,
                    a0=FLAGS.a0,
                    a=FLAGS.af,
                    nsteps=FLAGS.nsteps,
                    dtype=tf.float32):
    """
    Prototype of function computing LPT deplacement.

    Returns output tensorflow and mesh tensorflow tensors
    """
    # Compute a few things first, using simple tensorflow
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    # Define the named dimensions
    # Parameters of the small scales decomposition
    n_block_x = FLAGS.nx
    n_block_y = FLAGS.ny
    n_block_z = 1
    halo_size = FLAGS.hsize

    # Parameters of the large scales decomposition

    fx_dim = mtf.Dimension("nx", nc)
    fy_dim = mtf.Dimension("ny", nc)
    fz_dim = mtf.Dimension("nz", nc)

    tfx_dim = mtf.Dimension("tx", nc)
    tfy_dim = mtf.Dimension("ty", nc)
    tfz_dim = mtf.Dimension("tz", nc)

    tx_dim = mtf.Dimension("tx_lr", nc)
    ty_dim = mtf.Dimension("ty_lr", nc)
    tz_dim = mtf.Dimension("tz_lr", nc)

    nx_dim = mtf.Dimension('nx_block', n_block_x)
    ny_dim = mtf.Dimension('ny_block', n_block_y)
    nz_dim = mtf.Dimension('nz_block', n_block_z)

    sx_dim = mtf.Dimension('sx_block', nc // n_block_x)
    sy_dim = mtf.Dimension('sy_block', nc // n_block_y)
    sz_dim = mtf.Dimension('sz_block', nc // n_block_z)

    k_dims = [tx_dim, ty_dim, tz_dim]

    batch_dim = mtf.Dimension("batch", batch_size)

    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    pk_dim = mtf.Dimension("npk", len(plin))
    pk = mtf.import_tf_tensor(mesh, plin, shape=[pk_dim])

    # Compute necessary Fourier kernels
    kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
    kx = mtf.import_tf_tensor(mesh,
                              kvec[0].squeeze().astype('float32'),
                              shape=[tfx_dim])
    ky = mtf.import_tf_tensor(mesh,
                              kvec[1].squeeze().astype('float32'),
                              shape=[tfy_dim])
    kz = mtf.import_tf_tensor(mesh,
                              kvec[2].squeeze().astype('float32'),
                              shape=[tfz_dim])
    kv = [ky, kz, kx]

    # kvec for low resolution grid
    kvec_lr = flowpm.kernels.fftk([nc, nc, nc], symmetric=False)
    kx_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[0].squeeze().astype('float32'),
                                 shape=[tx_dim])
    ky_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[1].squeeze().astype('float32'),
                                 shape=[ty_dim])
    kz_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[2].squeeze().astype('float32'),
                                 shape=[tz_dim])
    kv_lr = [ky_lr, kz_lr, kx_lr]

    shape = [batch_dim, fx_dim, fy_dim, fz_dim]
    lr_shape = [batch_dim, fx_dim, fy_dim, fz_dim]
    hr_shape = [batch_dim, nx_dim, ny_dim, nz_dim, sx_dim, sy_dim, sz_dim]
    part_shape = [batch_dim, fx_dim, fy_dim, fz_dim]

    # Begin simulation

    ## Compute initial initial conditions distributed
    input_field = tf.placeholder(dtype, [batch_size, nc, nc, nc])
    if infield:
        initc = mtf.import_tf_tensor(mesh, input_field, shape=part_shape)
    else:
        initc = mtfpm.linear_field(mesh, shape, bs, nc, pk, kv)

    # Here we can run our nbody
    if FLAGS.nbody:
        state = mtfpm.lpt_init_single(
            initc,
            a0,
            kv_lr,
            halo_size,
            lr_shape,
            hr_shape,
            part_shape[1:],
            antialias=True,
        )
        # Here we can run our nbody
        final_state = mtfpm.nbody_single(state, stages, lr_shape, hr_shape,
                                         kv_lr, halo_size)
    else:
        final_state = mtfpm.lpt_init_single(
            initc,
            stages[-1],
            kv_lr,
            halo_size,
            lr_shape,
            hr_shape,
            part_shape[1:],
            antialias=True,
        )

    # paint the field
    final_field = mtf.zeros(mesh, shape=hr_shape)
    for block_size_dim in hr_shape[-3:]:
        final_field = mtf.pad(final_field, [halo_size, halo_size],
                              block_size_dim.name)
    final_field = mesh_utils.cic_paint(final_field, final_state[0], halo_size)
    # Halo exchange
    for blocks_dim, block_size_dim in zip(hr_shape[1:4],
                                          final_field.shape[-3:]):
        final_field = mpm.halo_reduce(final_field, blocks_dim, block_size_dim,
                                      halo_size)
    # Remove borders
    for block_size_dim in hr_shape[-3:]:
        final_field = mtf.slice(final_field, halo_size, block_size_dim.size,
                                block_size_dim.name)

    final_field = mtf.slicewise(
        lambda x: x[:, 0, 0, 0], [final_field],
        output_dtype=dtype,
        output_shape=[batch_dim, fx_dim, fy_dim, fz_dim],
        name='my_dumb_reshape',
        splittable_dims=part_shape[:-1] + hr_shape[:4])

    return initc, final_field, input_field
def benchmark_model(mesh):
  """
  Initializes a 3D volume with random noise, and execute a forward FFT
  """
  # Setup parameters
  bs = FLAGS.box_size
  nc = FLAGS.cube_size
  batch_size = FLAGS.batch_size
  a0 = FLAGS.a0
  a = 1.0
  nsteps = FLAGS.pm_steps

  # Compute a few things first, using simple tensorflow
  klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
  plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
  ipklin = iuspline(klin, plin)
  stages = np.linspace(a0, a, nsteps, endpoint=True)

  # Initialize the integration steps
  stages = np.linspace(FLAGS.a0, 1.0, FLAGS.pm_steps, endpoint=True)

  # Generate a batch of 3D initial conditions
  initial_conditions = flowpm.linear_field(
      nc,  # size of the cube
      bs,  # Physical size of the cube
      ipklin,  # Initial power spectrum
      batch_size=batch_size)

  # Compute necessary Fourier kernels
  kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
  from flowpm.kernels import laplace_kernel, gradient_kernel
  lap = tf.cast(laplace_kernel(kvec), tf.complex64)
  grad_x = gradient_kernel(kvec, 0)
  grad_y = gradient_kernel(kvec, 1)
  grad_z = gradient_kernel(kvec, 2)

  # Define the named dimensions
  # Parameters of the small scales decomposition
  n_block_x = 8
  n_block_y = 4
  n_block_z = 1
  halo_size = 4

  # Parameters of the large scales decomposition
  downsampling_factor = 2
  lnc = nc // 2**downsampling_factor

  fx_dim = mtf.Dimension("nx", nc)
  fy_dim = mtf.Dimension("ny", nc)
  fz_dim = mtf.Dimension("nz", nc)

  tfx_dim = mtf.Dimension("tx", nc)
  tfy_dim = mtf.Dimension("ty", nc)
  tfz_dim = mtf.Dimension("tz", nc)

  # Dimensions of the low resolution grid
  tx_dim = mtf.Dimension("tx_lr", nc)
  ty_dim = mtf.Dimension("ty_lr", nc)
  tz_dim = mtf.Dimension("tz_lr", nc)

  nx_dim = mtf.Dimension('nx_block', n_block_x)
  ny_dim = mtf.Dimension('ny_block', n_block_y)
  nz_dim = mtf.Dimension('nz_block', n_block_z)

  sx_dim = mtf.Dimension('sx_block', nc // n_block_x)
  sy_dim = mtf.Dimension('sy_block', nc // n_block_y)
  sz_dim = mtf.Dimension('sz_block', nc // n_block_z)

  batch_dim = mtf.Dimension("batch", batch_size)
  pk_dim = mtf.Dimension("npk", len(plin))
  pk = mtf.import_tf_tensor(mesh, plin.astype('float32'), shape=[pk_dim])

  # Compute necessary Fourier kernels
  kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
  kx = mtf.import_tf_tensor(mesh,
                            kvec[0].squeeze().astype('float32'),
                            shape=[tfx_dim])
  ky = mtf.import_tf_tensor(mesh,
                            kvec[1].squeeze().astype('float32'),
                            shape=[tfy_dim])
  kz = mtf.import_tf_tensor(mesh,
                            kvec[2].squeeze().astype('float32'),
                            shape=[tfz_dim])
  kv = [ky, kz, kx]

  kvec_lr = flowpm.kernels.fftk([nc, nc, nc], symmetric=False)
  kx_lr = mtf.import_tf_tensor(mesh,
                               kvec_lr[0].squeeze().astype('float32'),
                               shape=[tx_dim])
  ky_lr = mtf.import_tf_tensor(mesh,
                               kvec_lr[1].squeeze().astype('float32'),
                               shape=[ty_dim])
  kz_lr = mtf.import_tf_tensor(mesh,
                               kvec_lr[2].squeeze().astype('float32'),
                               shape=[tz_dim])
  kv_lr = [ky_lr, kz_lr, kx_lr]

  # kvec for high resolution blocks
  shape = [batch_dim, fx_dim, fy_dim, fz_dim]
  lr_shape = [batch_dim, fx_dim, fy_dim, fz_dim]
  hr_shape = [batch_dim, nx_dim, ny_dim, nz_dim, sx_dim, sy_dim, sz_dim]
  part_shape = [batch_dim, fx_dim, fy_dim, fz_dim]

  initc = mtfpm.linear_field(mesh, shape, bs, nc, pk, kv)
  state = mtfpm.lpt_init_single(
      initc,
      a0,
      kv_lr,
      halo_size,
      lr_shape,
      hr_shape,
      part_shape[1:],
      antialias=True,
  )
  #state = mtfpm.lpt_init(low, high, 0.1, kv_lr, kv_hr, halo_size, hr_shape, lr_shape,
  #                       part_shape[1:], downsampling_factor=downsampling_factor, antialias=True,)

  # Here we can run our nbody
  final_state = state  #mtfpm.nbody(state, stages, lr_shape, hr_shape, kv_lr, kv_hr, halo_size, downsampling_factor=downsampling_factor)

  # paint the field
  final_field = mtf.zeros(mesh, shape=hr_shape)
  for block_size_dim in hr_shape[-3:]:
    final_field = mtf.pad(final_field, [halo_size, halo_size],
                          block_size_dim.name)
  final_field = mesh_utils.cic_paint(final_field, final_state[0], halo_size)
  # Halo exchange
  for blocks_dim, block_size_dim in zip(hr_shape[1:4], final_field.shape[-3:]):
    final_field = mpm.halo_reduce(final_field, blocks_dim, block_size_dim,
                                  halo_size)
  # Remove borders
  for block_size_dim in hr_shape[-3:]:
    final_field = mtf.slice(final_field, halo_size, block_size_dim.size,
                            block_size_dim.name)

  #final_field = mtf.reshape(final_field,  [batch_dim, fx_dim, fy_dim, fz_dim])
  # Hack usisng  custom reshape because mesh is pretty dumb
  final_field = mtf.slicewise(lambda x: x[:, 0, 0, 0], [final_field],
                              output_dtype=tf.float32,
                              output_shape=[batch_dim, fx_dim, fy_dim, fz_dim],
                              name='my_dumb_reshape',
                              splittable_dims=part_shape[:-1] + hr_shape[:4])

  return mtf.reduce_sum(final_field)
Exemple #3
0
def nbody_fn(mesh,
             klin,
             plin,
             nc=FLAGS.nc,
             bs=FLAGS.box_size,
             batch_size=FLAGS.batch_size,
             a0=FLAGS.a0,
             a=FLAGS.af,
             nsteps=FLAGS.nsteps,
             dtype=tf.float32):
  """ Pyramid N-body function
  """
  stages = np.linspace(a0, a, nsteps, endpoint=True)

  # Define the named dimensions
  # Parameters of the small scales decomposition
  n_block_x = FLAGS.nx
  n_block_y = FLAGS.ny
  n_block_z = 1
  halo_size = FLAGS.hsize

  # Parameters of the large scales decomposition
  downsampling_factor = FLAGS.dsample
  lnc = nc // 2**downsampling_factor

  fx_dim = mtf.Dimension("nx", nc)
  fy_dim = mtf.Dimension("ny", nc)
  fz_dim = mtf.Dimension("nz", nc)

  tfx_dim = mtf.Dimension("tx", nc)
  tfy_dim = mtf.Dimension("ty", nc)
  tfz_dim = mtf.Dimension("tz", nc)

  # Dimensions of the low resolution grid
  x_dim = mtf.Dimension("nx_lr", lnc)
  y_dim = mtf.Dimension("ny_lr", lnc)
  z_dim = mtf.Dimension("nz_lr", lnc)

  tx_dim = mtf.Dimension("tx_lr", lnc)
  ty_dim = mtf.Dimension("ty_lr", lnc)
  tz_dim = mtf.Dimension("tz_lr", lnc)

  nx_dim = mtf.Dimension('nx_block', n_block_x)
  ny_dim = mtf.Dimension('ny_block', n_block_y)
  nz_dim = mtf.Dimension('nz_block', n_block_z)

  sx_dim = mtf.Dimension('sx_block', nc // n_block_x)
  sy_dim = mtf.Dimension('sy_block', nc // n_block_y)
  sz_dim = mtf.Dimension('sz_block', nc // n_block_z)

  batch_dim = mtf.Dimension("batch", batch_size)
  pk_dim = mtf.Dimension("npk", len(plin))
  pk = mtf.import_tf_tensor(mesh, plin.astype('float32'), shape=[pk_dim])

  # Compute necessary Fourier kernels
  kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
  kx = mtf.import_tf_tensor(
      mesh, kvec[0].squeeze().astype('float32'), shape=[tfx_dim])
  ky = mtf.import_tf_tensor(
      mesh, kvec[1].squeeze().astype('float32'), shape=[tfy_dim])
  kz = mtf.import_tf_tensor(
      mesh, kvec[2].squeeze().astype('float32'), shape=[tfz_dim])
  kv = [ky, kz, kx]

  # kvec for low resolution grid
  kvec_lr = flowpm.kernels.fftk([lnc, lnc, lnc], symmetric=False)

  kx_lr = mtf.import_tf_tensor(
      mesh,
      kvec_lr[0].squeeze().astype('float32') / 2**downsampling_factor,
      shape=[tx_dim])
  ky_lr = mtf.import_tf_tensor(
      mesh,
      kvec_lr[1].squeeze().astype('float32') / 2**downsampling_factor,
      shape=[ty_dim])
  kz_lr = mtf.import_tf_tensor(
      mesh,
      kvec_lr[2].squeeze().astype('float32') / 2**downsampling_factor,
      shape=[tz_dim])
  kv_lr = [ky_lr, kz_lr, kx_lr]

  # kvec for high resolution blocks
  padded_sx_dim = mtf.Dimension('padded_sx_block',
                                nc // n_block_x + 2 * halo_size)
  padded_sy_dim = mtf.Dimension('padded_sy_block',
                                nc // n_block_y + 2 * halo_size)
  padded_sz_dim = mtf.Dimension('padded_sz_block',
                                nc // n_block_z + 2 * halo_size)
  kvec_hr = flowpm.kernels.fftk([
      nc // n_block_x + 2 * halo_size, nc // n_block_y + 2 * halo_size,
      nc // n_block_z + 2 * halo_size
  ],
                                symmetric=False)

  kx_hr = mtf.import_tf_tensor(
      mesh, kvec_hr[0].squeeze().astype('float32'), shape=[padded_sx_dim])
  ky_hr = mtf.import_tf_tensor(
      mesh, kvec_hr[1].squeeze().astype('float32'), shape=[padded_sy_dim])
  kz_hr = mtf.import_tf_tensor(
      mesh, kvec_hr[2].squeeze().astype('float32'), shape=[padded_sz_dim])
  kv_hr = [ky_hr, kz_hr, kx_hr]

  shape = [batch_dim, fx_dim, fy_dim, fz_dim]
  lr_shape = [batch_dim, x_dim, y_dim, z_dim]
  hr_shape = [batch_dim, nx_dim, ny_dim, nz_dim, sx_dim, sy_dim, sz_dim]
  part_shape = [batch_dim, fx_dim, fy_dim, fz_dim]

  # Compute initial initial conditions distributed
  initc = mtfpm.linear_field(mesh, shape, bs, nc, pk, kv)

  # Reshaping array into high resolution mesh
  field = mtf.slicewise(
      lambda x: tf.expand_dims(
          tf.expand_dims(tf.expand_dims(x, axis=1), axis=1), axis=1), [initc],
      output_dtype=tf.float32,
      output_shape=hr_shape,
      name='my_reshape',
      splittable_dims=lr_shape[:-1] + hr_shape[1:4] + part_shape[1:3])

  for block_size_dim in hr_shape[-3:]:
    field = mtf.pad(field, [halo_size, halo_size], block_size_dim.name)

  for blocks_dim, block_size_dim in zip(hr_shape[1:4], field.shape[-3:]):
    field = mpm.halo_reduce(field, blocks_dim, block_size_dim, halo_size)

  field = mtf.reshape(field, field.shape + [mtf.Dimension('h_dim', 1)])
  high = field
  low = mesh_utils.downsample(field, downsampling_factor, antialias=True)

  low = mtf.reshape(low, low.shape[:-1])
  high = mtf.reshape(high, high.shape[:-1])

  for block_size_dim in hr_shape[-3:]:
    low = mtf.slice(low, halo_size // 2**downsampling_factor,
                    block_size_dim.size // 2**downsampling_factor,
                    block_size_dim.name)
  # Hack usisng  custom reshape because mesh is pretty dumb
  low = mtf.slicewise(
      lambda x: x[:, 0, 0, 0], [low],
      output_dtype=tf.float32,
      output_shape=lr_shape,
      name='my_dumb_reshape',
      splittable_dims=lr_shape[:-1] + hr_shape[:4])

  state = mtfpm.lpt_init(
      low,
      high,
      0.1,
      kv_lr,
      kv_hr,
      halo_size,
      hr_shape,
      lr_shape,
      part_shape[1:],
      downsampling_factor=downsampling_factor,
      antialias=True,
  )

  final_state = mtfpm.nbody(
      state,
      stages,
      lr_shape,
      hr_shape,
      kv_lr,
      kv_hr,
      halo_size,
      downsampling_factor=downsampling_factor)

  # paint the field
  final_field = mtf.zeros(mesh, shape=hr_shape)
  for block_size_dim in hr_shape[-3:]:
    final_field = mtf.pad(final_field, [halo_size, halo_size],
                          block_size_dim.name)
  final_field = mesh_utils.cic_paint(final_field, final_state[0], halo_size)
  # Halo exchange
  for blocks_dim, block_size_dim in zip(hr_shape[1:4], final_field.shape[-3:]):
    final_field = mpm.halo_reduce(final_field, blocks_dim, block_size_dim,
                                  halo_size)
  # Remove borders
  for block_size_dim in hr_shape[-3:]:
    final_field = mtf.slice(final_field, halo_size, block_size_dim.size,
                            block_size_dim.name)

  final_field = mtf.slicewise(
      lambda x: x[:, 0, 0, 0], [final_field],
      output_dtype=tf.float32,
      output_shape=[batch_dim, fx_dim, fy_dim, fz_dim],
      name='my_dumb_reshape',
      splittable_dims=part_shape[:-1] + hr_shape[:4])

  return initc, final_field
Exemple #4
0
def lpt_prototype(mesh,
                  nc=FLAGS.nc,
                  bs=FLAGS.box_size,
                  batch_size=FLAGS.batch_size,
                  a0=FLAGS.a0,
                  a=FLAGS.af,
                  nsteps=FLAGS.nsteps):
    """
    Prototype of function computing LPT deplacement.

    Returns output tensorflow and mesh tensorflow tensors
    """

    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    # Define the named dimensions
    # Parameters of the small scales decomposition
    n_block_x = FLAGS.nx
    n_block_y = FLAGS.ny
    n_block_z = 1
    halo_size = FLAGS.hsize

    if halo_size >= 0.5 * min(nc // n_block_x, nc // n_block_y,
                              nc // n_block_z):
        new_size = int(0.5 *
                       min(nc // n_block_x, nc // n_block_y, nc // n_block_z))
        print('WARNING: REDUCING HALO SIZE from %d to %d' %
              (halo_size, new_size))
        halo_size = new_size

    # Parameters of the large scales decomposition
    downsampling_factor = 0
    lnc = nc // 2**downsampling_factor

    #

    fx_dim = mtf.Dimension("nx", nc)
    fy_dim = mtf.Dimension("ny", nc)
    fz_dim = mtf.Dimension("nz", nc)

    tfx_dim = mtf.Dimension("tx", nc)
    tfy_dim = mtf.Dimension("ty", nc)
    tfz_dim = mtf.Dimension("tz", nc)

    tx_dim = mtf.Dimension("tx_lr", nc)
    ty_dim = mtf.Dimension("ty_lr", nc)
    tz_dim = mtf.Dimension("tz_lr", nc)

    nx_dim = mtf.Dimension('nx_block', n_block_x)
    ny_dim = mtf.Dimension('ny_block', n_block_y)
    nz_dim = mtf.Dimension('nz_block', n_block_z)

    sx_dim = mtf.Dimension('sx_block', nc // n_block_x)
    sy_dim = mtf.Dimension('sy_block', nc // n_block_y)
    sz_dim = mtf.Dimension('sz_block', nc // n_block_z)

    k_dims = [tx_dim, ty_dim, tz_dim]

    batch_dim = mtf.Dimension("batch", batch_size)
    pk_dim = mtf.Dimension("npk", len(plin))
    pk = mtf.import_tf_tensor(mesh, plin.astype('float32'), shape=[pk_dim])

    # Compute necessary Fourier kernels
    kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
    kx = mtf.import_tf_tensor(mesh,
                              kvec[0].squeeze().astype('float32'),
                              shape=[tfx_dim])
    ky = mtf.import_tf_tensor(mesh,
                              kvec[1].squeeze().astype('float32'),
                              shape=[tfy_dim])
    kz = mtf.import_tf_tensor(mesh,
                              kvec[2].squeeze().astype('float32'),
                              shape=[tfz_dim])
    kv = [ky, kz, kx]

    # kvec for low resolution grid
    kvec_lr = flowpm.kernels.fftk([nc, nc, nc], symmetric=False)
    kx_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[0].squeeze().astype('float32'),
                                 shape=[tx_dim])
    ky_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[1].squeeze().astype('float32'),
                                 shape=[ty_dim])
    kz_lr = mtf.import_tf_tensor(mesh,
                                 kvec_lr[2].squeeze().astype('float32'),
                                 shape=[tz_dim])
    kv_lr = [ky_lr, kz_lr, kx_lr]

    shape = [batch_dim, fx_dim, fy_dim, fz_dim]
    lr_shape = [batch_dim, fx_dim, fy_dim, fz_dim]
    hr_shape = [batch_dim, nx_dim, ny_dim, nz_dim, sx_dim, sy_dim, sz_dim]
    part_shape = [batch_dim, fx_dim, fy_dim, fz_dim]

    # Begin simulation

    initc = mtfpm.linear_field(mesh, shape, bs, nc, pk, kv)

    #    # Reshaping array into high resolution mesh
    #    field = mtf.slicewise(lambda x:tf.expand_dims(tf.expand_dims(tf.expand_dims(x, axis=1),axis=1),axis=1),
    #                      [initc],
    #                      output_dtype=tf.float32,
    #                      output_shape=hr_shape,
    #                      name='my_reshape',
    #                      splittable_dims=lr_shape[:-1]+hr_shape[1:4]+part_shape[1:3])
    #

    state = mtfpm.lpt_init_single(
        initc,
        a0,
        kv_lr,
        halo_size,
        lr_shape,
        hr_shape,
        part_shape[1:],
        antialias=True,
    )
    # Here we can run our nbody
    final_state = state  #mtfpm.nbody(state, stages, lr_shape, hr_shape, k_dims, kv_lr, kv_hr, halo_size, downsampling_factor=downsampling_factor)

    # paint the field
    final_field = mtf.zeros(mesh, shape=hr_shape)
    for block_size_dim in hr_shape[-3:]:
        final_field = mtf.pad(final_field, [halo_size, halo_size],
                              block_size_dim.name)
    final_field = mesh_utils.cic_paint(final_field, final_state[0], halo_size)
    # Halo exchange
    for blocks_dim, block_size_dim in zip(hr_shape[1:4],
                                          final_field.shape[-3:]):
        final_field = mpm.halo_reduce(final_field, blocks_dim, block_size_dim,
                                      halo_size)
    # Remove borders
    for block_size_dim in hr_shape[-3:]:
        final_field = mtf.slice(final_field, halo_size, block_size_dim.size,
                                block_size_dim.name)

    #final_field = mtf.reshape(final_field,  [batch_dim, fx_dim, fy_dim, fz_dim])
    # Hack usisng  custom reshape because mesh is pretty dumb
    final_field = mtf.slicewise(
        lambda x: x[:, 0, 0, 0], [final_field],
        output_dtype=tf.float32,
        output_shape=[batch_dim, fx_dim, fy_dim, fz_dim],
        name='my_dumb_reshape',
        splittable_dims=part_shape[:-1] + hr_shape[:4])

    return initc, final_field