def plot(spreading, _type, shift_array): def get_line(spread, _type): if _type == 'left' or _type == 'right': return spread.spread[_type]['val'] elif _type == 'radius': return calc_radius(spread) data = {} n = 0 for i, spread_list in enumerate(spreading): for j, _file in enumerate(spread_list): spread = Spread().read(_file) line = get_line(spread, _type) times = np.array(spread.times) - shift_array[i][j] data[n] = Series(data=line, index=times) n += 1 # Create DataFrame for all values and drop nan df = DataFrame(data).dropna() domain = df.index n = 0 data = [[], []] for i, spread_list in enumerate(spreading): for j, _ in enumerate(spread_list): data[i].append(df[n].tolist()) n += 1 t, p = stats.ttest_ind(data[0], data[1], equal_var=False) plot_line(line=p, domain=domain, label=label[0], color=colour[0], linestyle=linestyle['line'][0], hold=True) return None
def plot_data(spread, times): """Plot either edges or radius of specified line.""" for _type in args.plot_type: velocity = spread[_type]['val'] plot_line( line=velocity, domain=times, color=colours[i], label=label, linestyle=linestyles['line'][i] ) return None
def plot_data(spread, times): """Plot either edges or radius of specified line.""" for _type in plot_type: plot_line( line=spread[_type]['val'][0:], domain=np.array(times[0:]), color=colours[i], label=label, linestyle=linestyles['line'][i], linewidth=2 ) return None
def plot(spreading, _type, shift, style): def get_line(spread, _type): if _type == 'left' or _type == 'right': return spread.spread[_type]['std_error'] elif _type == 'radius': _, radius = calc_radius(spread, error=True) return radius for i, spread_list in enumerate(spreading): spread, _ = combine_spread(spread_list, shift=shift[0]) domain = spread.times line = get_line(spread, _type) plot_line( line=line, domain=domain, color=colours[i], label=labels[i], linestyle=style[i], hold=True ) return None
def draw_error_line(spread): mean = np.array(get_line(spread, _type, error=False)) std = np.array(get_line(spread, _type, error=True)) # If not standard deviation desired, calculate std error if args.std: error = std else: error = (std / np.sqrt(spread.spread['num']))*args.sigma plot_line( line=(mean + error), domain=spread.times, color=colours[i], linestyle=linestyles['error'][i] ) plot_line( line=(mean - error), domain=spread.times, color=colours[i], linestyle=linestyles['error'][i] ) return None
def spread_plot(args): """Draw the spreading as a function of time.""" # Get colours and line styles from default colours = get_colours(args.colour, len(args.spreading)) labels, draw_legend = get_labels(args.label, len(args.spreading)) linestyles = {} linestyles['line'] = get_linestyles(args.linestyle, len(args.spreading)) linestyles['fit'] = get_linestyles(args.fitstyle, len(args.spreading), 'dashed') # Create linear fitting function fitfunc = lambda p, t, r: r - p[0] - p[1] * t pinit = [1.0, 1/7] # Find shift array for synchronisation shift_array = get_shift(args.spreading, sync=args.sync) impact_shift = get_shift(args.spreading, sync='impact') # Create dicts for lists of fit constants (r = amp * t**index) amp = {} index = {} ampError = {} indexError = {} ampMean = [] ampMeanError = [] indexMean = [] indexMeanError = [] for i, spread_list in enumerate(args.spreading): amp[i] = [] index[i] = [] ampError[i] = [] indexError[i] = [] spread, full_data = combine_spread(spread_list, shift=shift_array[i]) spread.times = np.array(spread.times) - spread.times[0] for k, _file in enumerate(spread_list): data = Spread().read(_file) data.times = np.array(data.times) - impact_shift[i][k] # Get radius and domain radius = {'real': np.array(calc_radius(data))} domain = {'real': np.array(data.times)} # Cut times outside of range for j, time in enumerate(domain['real']): if time > args.tend: radius['real'] = radius['real'][:j] domain['real'] = domain['real'][:j] # Add logged values radius['log'] = np.log10(radius['real'][1:]) domain['log'] = np.log10(domain['real'][1:]) # Cut in log range for j, logt in enumerate(domain['log']): if logt > args.tendlog: radius['log'] = radius['log'][:j] domain['log'] = domain['log'][:j] # Fit constants to data out = optimize.leastsq(fitfunc, pinit, args=(domain['log'], radius['log']), full_output=1) pfinal = out[0] covar = out[1] # Add unlogged constants to lists amp[i].append(10**pfinal[0]) index[i].append(pfinal[1]) ampError[i].append(np.sqrt(covar[1][1]) * amp[i][-1]) indexError[i].append(np.sqrt(covar[0][0])) if args.draw == 'log' and args.nomean: plot_line( line=radius['log'], domain=domain['log'], color=colours[i], linestyle=linestyles['line'][i] ) if not args.nofit: plot_line( line=out[0][0] + out[0][1] * domain['log'], domain=domain['log'], color=colours[i], linestyle=linestyles['fit'][i] ) if args.draw == 'real' and args.nomean: plot_line( line=radius['real'], domain=domain['real'], color=colours[i], linestyle=linestyles['line'][i] ) if not args.nofit: plot_line( line=amp[i][-1] * (domain['real']**index[i][-1]), domain=domain['real'], color=colours[i], linestyle=linestyles['fit'][i] ) ampMean.append(np.mean(amp[i])) ampMeanError.append(np.std(amp[i]) / np.sqrt(len(amp[i]) - 1)) indexMean.append(np.mean(index[i])) indexMeanError.append(np.std(index[i]) / np.sqrt(len(index[i]) - 1)) if not args.nomean: if args.draw == 'log': plot_line( line=np.log10(calc_radius(spread)), domain=np.log10(spread.times), label=labels[i], color=colours[i], linestyle=linestyles['line'][i] ) if not args.nofit: plot_line( line=(np.log10(ampMean[i]) + indexMean[i] * np.log10(spread.times)), domain=np.log10(spread.times), label='C=%.2f, n=%.2f'%(ampMean[i], indexMean[i]), color=colours[i], linestyle=linestyles['fit'][i] ) if args.draw == 'real': plot_line( line=calc_radius(spread), domain=spread.times, label=labels[i], color=colours[i], linestyle=linestyles['line'][i] ) if not args.nofit: plot_line( line=ampMean[i] * (domain['real']**indexMean[i]), domain=domain['real'], label='C=%.2f, n=%.2f'%(ampMean[i], indexMean[i]), color=colours[i], linestyle=linestyles['fit'][i] ) plt.title(args.title, fontsize='medium') plt.axis('normal') plt.legend() # Default xlabel and xlims based on draw method if args.draw == 'real': if args.ylabel == None: args.ylabel = "Spread radius (nm)" if args.xlabel == None: args.xlabel = "Time (ps)" if (args.tend and args.tendlog) < np.inf: plt.xlim([None, min(args.tend, 10**args.tendlog)]) elif args.draw == 'log': if args.ylabel == None: args.ylabel = "log10 of radius (in nm)" if args.xlabel == None: args.xlabel = "log10 of time (in ps)" if (args.tend and args.tendlog) < np.inf: plt.xlim([None, min(args.tend, args.tendlog)]) plt.xlabel(args.xlabel, fontsize='medium') plt.ylabel(args.ylabel, fontsize='medium') if args.xlim: plt.xlim(args.xlim) # Print collected output print("Fitting spread radius 'R' of input file sets to power law functions " "of time 't' as 'R = C * (t ** n)' and taking means:") for i, _ in enumerate(amp): print() # If nomean, print individual line values if args.nomean: for values in zip(amp[i], ampError[i], index[i], indexError[i]): print("%f +/- %f" % (values[0], values[1]), end=', ') print("%f +/- %f" % (values[2], values[3])) # Print mean values if args.nomean: print(" -> ", end='') print("C = %f +/- %f" % (ampMean[i], ampMeanError[i])) if args.nomean: print(" -> ", end='') print("n = %f +/- %f" % (indexMean[i], indexMeanError[i])) # Finish by saving and / or showing if args.save: plt.savefig(args.save) if args.draw != 'off': plt.show() return None
def com_plot(args): """Draw the center of mass height as a function of time.""" # Get colours, labels and line styles from default colours = get_colours(args.colour, len(args.spreading)) labels, draw_legend = get_labels(args.label, len(args.spreading)) linestyles = {} linestyles['line'] = get_linestyles(args.linestyle, len(args.spreading)) linestyles['error'] = get_linestyles(args.errorstyle, len(args.spreading), 'dashed') # Find shift array for synchronisation shift_array = get_shift(args.spreading, sync=args.sync) for i, spread_list in enumerate(args.spreading): spread, data = combine_spread(spread_list, shift=shift_array[i]) # Check if error bars need to be included error = args.error and len(spread_list) > 1 # Create graph if args.nomean: label = labels[i] for spread_data in data: domain = spread_data.times line = spread_data.dist plot_line(line=line, domain=domain, color=colours[i], label=label, linestyle=linestyles['line'][i]) label = '_nolegend_' else: domain = spread.times line = spread.dist plot_line(line=line, domain=domain, color=colours[i], label=labels[i], linestyle=linestyles['line'][i]) if error: domain = spread.times line = list(np.array(spread.dist) + np.array(spread.spread['dist']['std_error']) * args.sigma) plot_line(line=line, domain=domain, color=colours[i], linestyle=linestyles['error'][i]) line = list(np.array(spread.dist) - np.array(spread.spread['dist']['std_error']) * args.sigma) plot_line(line=line, domain=domain, color=colours[i], linestyle=linestyles['error'][i]) plt.title(args.title) plt.xlabel(args.xlabel) plt.ylabel(args.ylabel) plt.axis('normal') plt.xlim([args.t0, args.tend]) if draw_legend: plt.legend() # Finish by saving and / or showing if args.save: plt.savefig(args.save) if args.show: plt.show() return None