Exemple #1
0
 def testFortran(self):
     """Test if `normalize_logspace` works with a F-contiguous array"""
     np.random.seed(0)
     mat = random((NCOL, NROW)).T
     self.assertTrue(mat.flags["F_CONTIGUOUS"])
     mat_out = normalize_logspace(mat)
     row_sum = mat_out.sum(1)
     approx_equal = arrays_almost_equal(row_sum, np.ones(NROW), accuracy=ACC)
     self.assertTrue(approx_equal)
Exemple #2
0
    def testMean(self):
        result = loadmat(join(TEST_DATA_LOC, 'faithful_final_mean.mat'),
                         squeeze_me=True)

        approx_equal = arrays_almost_equal(self.model.ESS.smm_mean,
                                           result['smm_mean'],
                                           accuracy=1e-1)

        self.assertTrue(approx_equal)
Exemple #3
0
    def runTest(self):

        # Test for the correct number of components
        self.assertEqual(self.model.ESS.num_comp, 3)

        # Test the means
        sorted_mean = np.sort(self.model.ESS.smm_mean, 0)
        approx_equal = arrays_almost_equal(sorted_mean,
                                           self.mean,
                                           accuracy=1e-1)
        self.assertTrue(approx_equal)
    def runTest(self):
        test_data = loadmat(join(test_data_loc,
                                 mat_filename), squeeze_me=True)
        args = (test_data[arg] for arg in argument_keys)

        if load_data:
            data = loadmat(join(test_data_loc,
                                'faithful.mat'), squeeze_me=True)
            args = (data['data'],) + tuple(args)

        test_result = test_function(*args)
        approx_equal = arrays_almost_equal(test_data[result_key],
                                           test_result,
                                           accuracy=max_diff)
        self.assertTrue(approx_equal)