def main():
    parser = argparse.ArgumentParser(description="Evaluates a fluid network")
    parser.add_argument("--trainscript",
                        type=str,
                        required=True,
                        help="The python training script.")
    parser.add_argument(
        "--checkpoint_iter",
        type=int,
        required=False,
        help="The checkpoint iteration. The default is the last checkpoint.")
    parser.add_argument("--frame-skip",
                        type=int,
                        default=5,
                        help="The frame skip. Default is 5.")

    args = parser.parse_args()

    global trainscript
    module_name = os.path.splitext(os.path.basename(args.trainscript))[0]
    sys.path.append('.')
    trainscript = importlib.import_module(module_name)

    # get a list of checkpoints
    checkpoint_files = glob(
        os.path.join(trainscript.train_dir, 'checkpoints', 'ckpt-*.index'))
    all_checkpoints = sorted([
        (int(re.match('.*ckpt-(\d+)\.index',
                      x).group(1)), os.path.splitext(x)[0])
        for x in checkpoint_files
    ])

    # select the checkpoint
    if args.checkpoint_iter is not None:
        checkpoint = dict(all_checkpoints)[args.checkpoint_iter]
    else:
        checkpoint = all_checkpoints[-1]

    output_path = args.trainscript + '_eval_{}.json'.format(checkpoint[0])
    if os.path.isfile(output_path):
        print('Printing previously computed results for :', checkpoint)
        fluid_errors = FluidErrors()
        fluid_errors.load(output_path)
    else:
        print('evaluating :', checkpoint)
        fluid_errors = FluidErrors()
        eval_checkpoint(checkpoint[1], trainscript.val_files, fluid_errors,
                        args)
        fluid_errors.save(output_path)

    print_errors(fluid_errors)
    return 0
Exemple #2
0
def main():
    parser = argparse.ArgumentParser(
        description="Evaluates a fluid network",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--trainscript",
                        type=str,
                        required=True,
                        help="The python training script.")
    parser.add_argument(
        "--checkpoint_iter",
        type=int,
        required=False,
        help="The checkpoint iteration. The default is the last checkpoint.")
    parser.add_argument(
        "--weights",
        type=str,
        required=False,
        help="If set uses the specified weights file instead of a checkpoint.")
    parser.add_argument("--frame-skip",
                        type=int,
                        default=5,
                        help="The frame skip. Default is 5.")
    parser.add_argument("--device",
                        type=str,
                        default="cuda",
                        help="The device to use. Applies only for torch.")

    args = parser.parse_args()

    global trainscript
    module_name = os.path.splitext(os.path.basename(args.trainscript))[0]
    sys.path.append('.')
    trainscript = importlib.import_module(module_name)

    if args.weights is not None:
        print('evaluating :', args.weights)
        output_path = args.weights + '_eval.json'
        if os.path.isfile(output_path):
            print('Printing previously computed results for :', args.weights)
            fluid_errors = FluidErrors()
            fluid_errors.load(output_path)
        else:
            fluid_errors = FluidErrors()
            eval_checkpoint(args.weights, trainscript.val_files, fluid_errors,
                            args)
            fluid_errors.save(output_path)
    else:
        # get a list of checkpoints

        # tensorflow checkpoints
        checkpoint_files = glob(
            os.path.join(trainscript.train_dir, 'checkpoints', 'ckpt-*.index'))
        # torch checkpoints
        checkpoint_files.extend(
            glob(os.path.join(trainscript.train_dir, 'checkpoints',
                              'ckpt-*.pt')))
        all_checkpoints = sorted([
            (int(re.match('.*ckpt-(\d+)\.(pt|index)', x).group(1)), x)
            for x in checkpoint_files
        ])

        # select the checkpoint
        if args.checkpoint_iter is not None:
            checkpoint = dict(all_checkpoints)[args.checkpoint_iter]
        else:
            checkpoint = all_checkpoints[-1]

        output_path = args.trainscript + '_eval_{}.json'.format(checkpoint[0])
        if os.path.isfile(output_path):
            print('Printing previously computed results for :', checkpoint)
            fluid_errors = FluidErrors()
            fluid_errors.load(output_path)
        else:
            print('evaluating :', checkpoint)
            fluid_errors = FluidErrors()
            eval_checkpoint(checkpoint[1], trainscript.val_files, fluid_errors,
                            args)
            fluid_errors.save(output_path)

    print_errors(fluid_errors)
    return 0