def test_image_overlay(): """Test image overlay.""" data = [[[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]], [[1, 1, 0, 0.5], [0, 0, 1, 1], [0, 0, 1, 1]]] m = folium.Map() io = plugins.ImageOverlay(data, [[0, -180], [90, 180]], mercator_project=True) io.add_to(m) m._repr_html_() out = m._parent.render() # Verify the url generation assert io.url == ('' 'AF0lEQVR42mP4z8AARFDw/z/DeiA5H4QBV60H6ABl9ZIAAAAASUVORK5CYII=') # Verify the script part is okay. tmpl = Template(""" var {{this.get_name()}} = L.imageOverlay( '{{ this.url }}', {{ this.bounds }}, {{ this.options }} ).addTo({{this._parent.get_name()}}); """) assert tmpl.render(this=io) in out bounds = m.get_bounds() assert bounds == [[0, -180], [90, 180]], bounds
def create_image_map(image_data, bounds): min_lat, max_lat, min_lon, max_lon = bounds folium_map = folium.Map(location=[40.738, -73.98], zoom_start=13, tiles="CartoDB dark_matter", width='100%') # create the overlay map_overlay = add_alpha(to_image(image_data)) # compute extent of image in lat/lon aspect_ratio = map_overlay.shape[1] / map_overlay.shape[0] delta_lat = (max_lon - min_lon) / aspect_ratio * np.cos( min_lat / 360 * 2 * np.pi) # add the image to the map img = plugins.ImageOverlay(map_overlay, bounds=[(max_lat - delta_lat, min_lon), (max_lat, max_lon)], opacity=1, name="Paths") img.add_to(folium_map) folium.LayerControl().add_to(folium_map) # return the map return folium_map
cols = ds.RasterXSize rows = ds.RasterYSize #Get extent xmin=geotransform[0] ymax=geotransform[3] xmax=xmin+cols*geotransform[1] ymin=ymax+rows*geotransform[5] #Get Central point centerx=(xmin+xmax)/2 centery=(ymin+ymax)/2 #Raster convert to array in numpy bands = ds.RasterCount band=ds.GetRasterBand(1) dataset= band.ReadAsArray(0,0,cols,rows) dataimage=dataset dataimage[dataimage[:,:]==-340282346638528859811704183484516925440.000]=0 #Visualization in folium map= folium.Map(location=[centery, centerx], zoom_start=7,tiles='Stamen Terrain') plugins.ImageOverlay( image=dataimage, bounds=[[ymin, xmin], [ymax, xmax]], colormap=lambda x: (1, 0, x, x),#R,G,B,alpha ).add_to(map) #Save html map.save('wd.html')
def init(request): form = HCMRForm() scenario = request.GET['scenario'] print scenario execution_steps = dict() execution_steps['OIL_SPILL_SCENARIO_1'] = [ "starting service", "Creating simulation request", "Simulation running", "Simulation results received", "Transforming data to be shown on map", "Calculating oil spill intersections with protected areas", "done" ] execution_steps['OIL_SPILL_SCENARIO_2'] = [ "starting service", "Creating simulation request", "Simulation running", "Simulation results received", "Transforming data to be shown on map", "Calculating oil spill intersections with protected areas", "done" ] execution_steps['OIL_SPILL_SCENARIO_3'] = [ "starting service", "Creating simulation request", "Simulation running", "Simulation results received", "Transforming data to be shown on map", "Calculating oil spill intersections with protected areas", "done" ] list = [] for i in range(0, 61): list.append(i * 12) list.pop(0) m = create_map() if int(scenario) == 2: data_img = Image.open( 'visualizer/static/visualizer/img/ais_density_maps/ais_data_photo_med.png' ) data = trim(data_img) data_img.close() # Overlay the image density_map_layer = plugins.ImageOverlay(data, zindex=1, opacity=0.5, mercator_project=True, bounds=[[30.13, -5.941], [45.86, 36.42]]) density_map_layer.layer_name = 'AIS Density Map' m.add_child(density_map_layer) folium.LayerControl().add_to(m) temp_map = 'templates/map1' + str(int(time.time())) + '.html' m.save(temp_map) map_html = open(temp_map, 'r').read() soup = BeautifulSoup(map_html, 'html.parser') map_id = soup.find("div", {"class": "folium-map"}).get('id') js_all = soup.findAll('script') # print(js_all) if len(js_all) > 5: js_all = [js.prettify() for js in js_all[5:]] css_all = soup.findAll('link') if len(css_all) > 3: css_all = [css.prettify() for css in css_all[3:]] print map_id return render( request, 'hcmr_pilot/load_service.html', { 'form': form, 'scenario': scenario, 'execution_steps': execution_steps, 'sim_len_list': list, 'map_id': map_id, 'js_all': js_all, 'css_all': css_all })
def index(): if flask.request.args.get('date') == None: return flask.render_template('index.html', dates=dates, phenom=m_type, months=month) date = int(flask.request.args.get('date')) month_selected = flask.request.args.get('months') phenom_long = flask.request.args.get('phenom') duration = int(flask.request.args.get('duration')) for key, name in CATEGORIES.iteritems(): if name == phenom_long: phenom = key choosed_month, year = month_selected.split('/') try: start_date = datetime.datetime(int(year), int(choosed_month), date, 00, 00, 00) end_date = datetime.datetime(int(year), int(choosed_month), date, 23, 59, 59) + \ datetime.timedelta(days=duration) except: return flask.render_template('error.html', dates=dates, phenom=m_type, months=month, error='date') # http://stackoverflow.com/questions/12438990/select-records-from-postgres-where-timestamp-is-in-certain-rangsoure if phenom_long == 'temperature': sql_sensor = "SELECT DISTINCT idsensor FROM data where (timestamp > '%s' and timestamp < '%s') and (measuretype = 'CA' or measuretype = 'ST');" % ( start_date, end_date) elif phenom_long == 'humidity': sql_sensor = "SELECT DISTINCT idsensor FROM data where (timestamp > '%s' and timestamp < '%s') and (measuretype = 'CB' or measuretype = 'SH');" % ( start_date, end_date) else: sql_sensor = "SELECT DISTINCT idsensor FROM data where (timestamp > '%s' and timestamp < '%s') and measuretype = '%s';" % ( start_date, end_date, str(phenom)) holice_map = folium.Map(MAP_CENTER, zoom_start=18, tiles=None) folium.TileLayer('OpenStreetMap').add_to(holice_map) folium.TileLayer('MapQuestOpen').add_to(holice_map) # Map.add_children(folium.plugins.ImageOverlay(...)) # ICON_URL = 'static/python.jpg' holice_map.add_children( plugins.ImageOverlay( ICON_URL, [PICTURE_COORS], opacity=0.5, )) # folium.LayerControl().add_to(holice_map) holice_map.add_children(folium.LayerControl()) cur.execute(sql_sensor) # list of sensors [int,int,int], instead of [(int,), (int,), (int,)] sensors = [i[0] for i in cur.fetchall()] multi_iter1 = {} locations, popups = [], [] for sensor_sql in sensors: # print sensor_sql for sensor in SENSOR: # print sensor if sensor[0] == sensor_sql: sensor_start_date = datetime.datetime.strptime( sensor[2], "%Y-%m-%d") sensor_end_date = datetime.datetime.strptime( sensor[3], "%Y-%m-%d %H:%M:%S") start_date_new = start_date end_date_new = end_date # print str(end_date) + ' > ' + str(sensor_start_date) # sensor have to not end measurement before start date and not start measurement after the end of end day if end_date >= sensor_start_date and start_date <= sensor_end_date: # if sensor start measurement after start day, the start day will be replaced by sensor start day # if value of start_date and end_date will be replaced, end of sensor measurement after end_date will not be replaced if sensor_start_date > start_date: #print start_date, sensor_start_date start_date_new = sensor_start_date if sensor_end_date < end_date: #print end_date, sensor_end_date end_date_new = sensor_end_date # + datetime.timedelta(days=duration) sensor_data = {} if phenom_long == 'temperature': sql_data_sensor = "SELECT measurevalue, timestamp FROM data WHERE (timestamp > '%s' and timestamp < '%s') and (measuretype = 'CA' or measuretype = 'ST') and idsensor = %d;" % ( start_date_new, end_date_new, int(sensor[0])) elif phenom_long == 'humidity': sql_data_sensor = "SELECT measurevalue, timestamp FROM data WHERE (timestamp > '%s' and timestamp < '%s') and (measuretype = 'CB' or measuretype = 'SH') and idsensor = %d;" % ( start_date_new, end_date_new, int(sensor[0])) else: sql_data_sensor = "SELECT measurevalue, timestamp FROM data WHERE (timestamp > '%s' and timestamp < '%s') and measuretype = '%s' and idsensor = %d;" % ( start_date_new, end_date_new, str(phenom), int(sensor[0])) print sql_data_sensor cur.execute(sql_data_sensor) # sort tuples by time_pattern sql_data = sorted(list(cur.fetchall()), key=lambda time: time[1]) for row in sql_data: # http://stackoverflow.com/questions/16198606/python-linux-timestamp-to-date-time-and-reverse # https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior time_index = int( time.mktime( time.strptime(str(row[1]), "%Y-%m-%d %H:%M:%S")) * 1000) # some data do not have measurevalue (83k rows) if row[0]: value = float(row[0]) else: value = 0.0 sensor_data[time_index] = value multi_iter1[sensor[0]] = sensor_data # if there are no data if multi_iter1[sensor[0]]: vis = vincent.Line(multi_iter1[sensor[0]], width=600, height=200) x_axis_str = 'data for sensor (' + str( sensor[0]) + '). Time period: ' + str( start_date_new) + ' to ' + str(end_date_new) vis.axis_titles(x=str(x_axis_str), y=phenom_long) vis._axis_properties(axis='y', title_size=15, title_offset=-10, label_align='right', label_angle=0, color='#000000') vis.scales['x'] = vincent.Scale(name='x', type='time', range='width', domain=vincent.DataRef( data='table', field="data.idx")) vis.scales['y'] = vincent.Scale(name='y', type='linear', range='height', domain=vincent.DataRef( data='table', field="data.val")) vis.to_json('static/vis_%s.json' % sensor[0]) popups.append( folium.Popup(max_width=1900).add_child( folium.Vega(json.load( open('static/vis_%s.json' % sensor[0])), width="100%", height="100%"))) locations.append(sensor[1]) if not locations: return flask.render_template('error.html', dates=dates, phenom=m_type, months=month, error='locations') holice_map.add_children(plugins.MarkerCluster(locations, popups)) holice_map.save('templates/map.html') return flask.render_template('map.html')
import os import folium from folium import plugins Uni_map = os.path.join('', 'Uni_map.png') map_osm = folium.Map(location=[65.0593, 25.4663], zoom_start=17, tiles='Stamen Terrain') folium.Marker([65.0593, 25.4663], popup='Central Station').add_to(map_osm) folium.Marker([65.0593, 25.4669], popup='Tellus Library').add_to(map_osm) folium.CircleMarker(location=[65.0599, 25.4699], radius=50, popup='You are in University area', color='#3186cc', fill_color='#3186cc').add_to(map_osm) plugins.ImageOverlay( image=open(Uni_map, 'r'), bounds=[[65.0540, 25.4585], [65.0640, 25.4765]], opacity=0.8, ).add_to(map_osm) folium.LayerControl().add_to(map_osm) map_osm.save(os.path.join('', 'map2.html'))
from folium import plugins path = 'D:/Project_Data/Arctic_PRIZE/Processed_Data/S1' merc = os.path.join( path, 'S1A_EW_GRDM_1SDH_20170601T071215_20170601T071320_016837_01BFE1_35BF_terrian_200mHH.tif' ) m = folium.Map([37, 0], zoom_start=1, tiles='stamentoner') img = plugins.ImageOverlay( name='Mercator projection SW', image=merc, bounds=[[15, 80], [83, 35]], opacity=0.6, interactive=True, cross_origin=False, zindex=1, ) folium.Popup('I am an image').add_to(img) img.add_to(m) folium.LayerControl().add_to(m) m.save(os.path.join('results', 'ImageOverlay_0.html')) m
cluster2.layer_name = "Locations with more than {:d} daily pickups".format( MIN_SHOW_CHART) # Overlay the image import scipy from scipy.ndimage.filters import gaussian_filter wherePeopleLive = np.flipud( np.load('whereArePeopleGoing.npy')[:, :, -2]).astype(float) wherePeopleLive = scipy.ndimage.filters.gaussian_filter(wherePeopleLive, sigma=4) wherePeopleLive = np.log10(wherePeopleLive + 1) wherePeopleLive[np.where(wherePeopleLive == 0)] = np.nan whereArePeopleGoing = plugins.ImageOverlay(wherePeopleLive, opacity=0.8, \ bounds =[[40.550, -74.150],\ [40.900, -73.750]],\ colormap=plt.cm.inferno,\ attr = 'Where do young people live?') whereArePeopleGoing.layer_name = "Where do young people live?" whereArePeopleGoing.add_to(map_of_nyc) ######################################## from folium.plugins import * folium.plugins.MeasureControl(position='topright', primary_length_unit='miles', secondary_length_unit='meters') ######################################## map_of_nyc.add_child(folium.LayerControl()) map_of_nyc.save('map.html') ################################################################################
plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.savefig(FileName, bbox_inches='tight', pad_inches=0, dpi=300) # Create a map and overlay the image map_osm = folium.Map(location=[lat_destination, long_destination], zoom_start=10) folium.Marker([lat_destination, long_destination], popup='Work').add_to(map_osm) folium.Marker([lat_home, long_home], popup='Home').add_to(map_osm) plugins.ImageOverlay( image=open(FileName, 'br'), bounds=[[min(lat), min(long)], [max(lat), max(long)]], opacity=0.4, ).add_to(map_osm) folium.LayerControl().add_to(map_osm) map_osm.save('TravelTimeMap.html') """ TILES: | - "OpenStreetMap" | - "Mapbox Bright" (Limited levels of zoom for free tiles) | - "Mapbox Control Room" (Limited levels of zoom for free tiles) | - "Stamen" (Terrain, Toner, and Watercolor) | - "Cloudmade" (Must pass API key) | - "Mapbox" (Must pass API key) | - "CartoDB" (positron and dark_matter) """