Exemple #1
0
def show_acce(map_data_p, lat0_p, lng0_p, vehicleplate_number_p, num1_p,
              acceleration_data_p, lat_p, lng_p, location_time_p,
              file_out_path_p):
    m = folium.Map([lat0_p, lng0_p], zoom_start=8)

    m.add_child(folium.LatLngPopup())  #在地图上显示经纬度;

    route = folium.PolyLine(  #polyline方法为将坐标用线段形式连接起来
        map_data_p,  #将坐标点连接起来
        weight=3,  #线的大小为3
        color='blue',  #线的颜色为橙色
        opacity=0.8  #线的透明度
    ).add_to(m)  #将这条线添加到刚才的区域m内

    for i in range(num1_p):
        if i != 0 and i % 59 == 0:
            y_data = [acceleration_data_p[j] for j in range(i - 59, i + 1, 1)]
            vis = vincent.Line(y_data, width=320, height=150)
            vis.axis_titles(x=location_time_p[i - 59] + '至' +
                            location_time_p[i] + '的加速度变化',
                            y='单位:m/s^2')
            vis_json = vis.to_json()
            tooltip = location_time_p[i - 59] + '至' + location_time_p[i]

            status = 0
            for k in range(i - 59, i + 1):
                if acceleration_data_p[k] > 3 or acceleration_data_p[
                        k] < -3:  #判断加速度
                    status = 1

            if status == 1:
                folium.Marker(
                    location=[lat_p[i], lng_p[i]],
                    popup=folium.Popup(max_width=3250).add_child(
                        folium.Vega(vis_json, width=380, height=200)),
                    icon=folium.Icon(color='red', icon='info-sign'),
                    tooltip=tooltip).add_to(
                        m
                    )  #在每60条记录处显示一个标记点,且点击标记点可以看到过去60条记录内车辆的加速度变化折线图速度变化折线图
            else:
                folium.Marker(
                    location=[lat_p[i], lng_p[i]],
                    popup=folium.Popup(max_width=3250).add_child(
                        folium.Vega(vis_json, width=380, height=200)),
                    tooltip=tooltip).add_to(
                        m
                    )  #在每60条记录处显示一个标记点,且点击标记点可以看到过去的60条记录内车辆的加速度变化折线图速度变化折线图

    html_path = os.path.join('r', file_out_path_p,
                             vehicleplate_number_p + '_acceleration.html')
    m.save(html_path)  #将结果以HTML形式保存
    webbrowser.open(html_path, new=1)
    def make_line_chart_popup(data_row:pd.Series, title:str) -> folium.Popup:
        '''Create a line chart popup from temporal Series for departements
        Index of the Series have to be in {year}_median, {year}_decile1, {year}_decile9, {year+1}_median, {year+1}_decile1... format
        this popup can be added in map layers'''
        # filter index names and build 3 columns from one(series)
        data = {
                'decile_1': data_row.filter(regex=".*decile_1$").values,
                'decile_9': data_row.filter(regex=".*decile_9$").values,
                'median': data_row.filter(like="median").values,
                }
        df_to_display = pd.DataFrame.from_dict(data)
        data_row = data_row.drop("color")

        # create index of the dataframe from the inital data_row Series.index
        df_to_display.index = pd.to_datetime(list(dict.fromkeys([int(annee_c[:4]) for annee_c in data_row.index.tolist()])), format="%Y")

        line_chart = vincent.Line(df_to_display,
                                width=300,
                                height=200)
        line_chart.axis_titles(x='Année', y='prix m2')
        line_chart.legend(title=title)

        popup = folium.Popup()
        folium.Vega(line_chart, width = 400, height=250).add_to(popup)
        return popup
def map_plot(file):
    # generate a new map
    folium_map = folium.Map(location=[43.6532, -79.3832],
                            zoom_start=13,
                            tiles="Stamen Terrain")

    for index, row in file.iterrows():

        #Defining marker colours.
        if int(row['actual_height']/3) <= int(row['ht_height']/3):
            color="#4daf4a"  

        else:
            color="#fc8d62" 
        # Create vincent chart and popup.
       
        data = [int(row["ht_height"]/3), int(row["actual_height"]/3),int(row["nearest_neigh"]/3),int(row["rand_forest"]/3)]
        ind = ['By-law Limit', 'Actual', 'Nearest Buildings', 'Random Forest']
        df = pd.DataFrame (data, index = ind)
        bar_chart = vincent.Bar(df,
                                width=350,
                                height=300)
        bar_chart.axis_titles (x='', y='Number of Floors')
        bar_chart.colors(brew='Set3')

        bar_chart.scales['x'].padding = 0.2

        bar_json = bar_chart.to_json()
        bar_dict = json.loads(bar_json)
        popup = folium.Popup(max_width=400)
        folium.Vega(bar_dict, height=350, width=400).add_to(popup)            
        folium.CircleMarker(location=(row["lat"],row["long"]),popup=popup, color=color, radius=5, fill=True ).add_to(folium_map)
    return folium_map
    def visualMap(self):
        mdCoords = [39.38, -77.36]  #  Frederick County MD GPS coordinates
        allScores = self.score2Json()
        map = folium.Map(location=[mdCoords[0], mdCoords[1]],
                         zoom_start=10,
                         control_scale=True,
                         prefer_canvas=True,
                         disable_3d=True)
        meanScores = allScores[0]
        folium.Choropleth(geo_data=self.gdf,
                          name='choropleth',
                          data=meanScores,
                          columns=['School', 'Mean Score'],
                          key_on='feature.properties.School',
                          fill_color='YlGnBu',
                          legend_name='Mean sentiment score',
                          na_fill_color='white',
                          na_fill_opacity=0.2,
                          fill_opacity=0.7,
                          line_weight=0.6,
                          line_opacity=0.2).add_to(map)

        scores = allScores[1]
        schools = list(scores.keys())
        coords = allScores[2]

        for school, coord in zip(schools, coords):
            chart = self.json2PieChart(scores[school], school)
            vega = folium.Vega(chart, width=200, height=100)
            pop_up = folium.Popup(max_width=400).add_child(vega)
            icon = folium.Icon(color='blue', icon='info-sign')
            folium.Marker(location=[coord[0], coord[1]],
                          popup=pop_up,
                          icon=icon).add_to(map)
        return map
Exemple #5
0
def create_map(df, col1):
    regions_geo = 'regions.geojson'
    df1 = df.groupby('Region').size()
    map_1 = folium.Map(location=[52.958, 0.7], zoom_start=7)
    map_1.choropleth(geo_path=regions_geo,
                     data=df1,
                     columns=['region_code', 'Size'],
                     key_on='properties.region_code',
                     fill_color='BuPu',
                     fill_opacity=0.7,
                     line_opacity=0.2,
                     legend_name='No. of people from region in census')

    for region in df['Region'].unique().tolist():
        df1 = df[df['Region'].str.contains(region)]
        bar = vincent.Bar(df1[col1].value_counts(), width=350, height=250)
        xtitle = col1 + "in: " + regions.get(region)
        bar.axis_titles(x=xtitle, y='')
        loc = coordinates.get(region)
        popup1 = folium.Popup(max_width=800, ).add_child(
            folium.Vega(bar, width=400, height=300))
        folium.RegularPolygonMarker(loc,
                                    fill_color='#43d9de',
                                    radius=12,
                                    popup=popup1).add_to(map_1)

    return map_1
Exemple #6
0
def popups(id):
    labels=["Total Confirmed cases","Cured/Discharged/Migrated","Death"]
    sizes=[df_list[0]["Total Confirmed cases (Including 111 foreign Nationals)"][id],df_list[0]["Cured/Discharged/Migrated"][id],df_list[0]["Death"][id]]
    data={labels[0]:sizes[0],labels[1]:sizes[1],labels[2]:sizes[2]}
    a=vincent.Pie(data,width=500,height=300)
    a.legend(state["Name"][i])
    popup=folium.Popup(width=550,height=100)
    folium.Vega(a).add_to(popup)
    return popup
Exemple #7
0
    def add_air_station_marker_with_graph(self, data, *args, **kwargs):
        """Esta función se encarga de agregar graficos al los marcadores existentes"""
        locations = data.iloc[:, [1, 2]]
        station_names = data.iloc[:, [3]]

        station_ids = list(pd.unique(data.id))
        station_groups = data.groupby('id')

        for station_id in station_ids:
            filtered_data = station_groups.get_group(station_id)
            print('***** data get group')
            print(type(filtered_data))
            print(filtered_data.head())
            plot_data = filtered_data.groupby(
                ['magnitude', 'year', 'month', 'day']).agg({
                    'value': 'mean'
                }).reset_index()
            print('***** data plot data')
            print(type(plot_data))
            print(plot_data.head())

            x = [int(hour) for hour in list(plot_data['day'])]
            y = [int(value) for value in list(plot_data['value'])]
            print(x)
            print(y)

            xy_values = {
                'x': x,
                'y': y,
            }
            scatter_chart = vincent.Scatter(xy_values,
                                            iter_idx='x',
                                            width=600,
                                            height=300)

            scatter_chart.axis_titles(x='Día',
                                      y='Promedio Dióxido de Nitrogeno día')

            popup_scatter_plot = folium.Popup(max_width=900).add_child(
                folium.Vega(scatter_chart, height=350, width=700))

            air_quality_station = [
                filtered_data.iloc[0, 1], filtered_data.iloc[0, 2]
            ]
            print(air_quality_station)
            station_name = [filtered_data.iloc[0, 3]]
            print(station_name)
            folium.Marker(
                location=air_quality_station,
                tooltip=folium.Tooltip(
                    f'Estación: {station_name[0]}<br>Latitud: {round(air_quality_station[0], 4)}<br>Longitud: {round(air_quality_station[1], 4)}'
                ),
                popup=popup_scatter_plot,
                icon=folium.CustomIcon(icon_image='icons/forecast.png',
                                       icon_size=(40, 40))).add_to(self._map)
Exemple #8
0
def createTSMap(pos, timeSeries, zoom_start=4):
    map = folium.Map(location=pos.items(), zoom_start=4,crs='EPSG4326')

    df = timeSeries;
    df.index = df.index.values.astype('M8[D]')
    chart = vincent.Line(df[['evi','ndvi']],width=300,height=150)
    chart.legend(title='')
    chart.axis_titles(x='dates', y='')

    popup = folium.Popup(max_width=400)
    folium.Vega(chart.to_json(), height=200, width=450).add_to(popup)
    folium.Marker(pos.items(), popup=popup,icon=folium.Icon(color='green',icon='info-sign')).add_to(map)

    wms = folium.features.WmsTileLayer('https://neo.sci.gsfc.nasa.gov/wms/wms',
                                       name='MODIS Data',
                                       format='image/png',
                                       layers='MOD13A2_M_NDVI')
    wms.add_to(map)
    return map
def create_map(dataf, year):

    state_geo = os.path.join('BIN/data/us-states.json')

    with open('BIN/data/location_state.txt', 'r') as rd:
        f = rd.read()
        location = eval(f)

    with open('BIN/data/states.txt', 'r') as rd:
        f = rd.read()
        states = eval(f)
    prd = pd.read_csv('BIN/data/predictions_in_states.csv', index_col=0)
    # Initialize the map:
    m = folium.Map(location=[52, -112], zoom_start=3)
    df = pd.read_csv('BIN/data/scores.csv', index_col=0)
    # Add the color for the chloropleth:
    m.choropleth(geo_data=state_geo,
                 name='choropleth',
                 data=df,
                 columns=['States', 'R^2'],
                 fill_color='GnBu',
                 key_on='feature.id',
                 fill_opacity=0.8,
                 line_opacity=0.6,
                 legend_name='R^2 prediction')
    folium.LayerControl().add_to(m)
    m.add_child(folium.LatLngPopup())
    for s in states:
        if s == 'NH' or s == 'WI' or s == 'WV' or s == 'DC':
            continue
        folium.RegularPolygonMarker(
            [location[s][0], location[s][1]],
            fill_color='#43d9de',
            radius=4,
            popup=folium.Popup(max_width=450).add_child(
                folium.Vega(build_json_plot(dataf, prd, state=s),
                            width=250,
                            height=250))).add_to(m)

    m.save('BIN/data/map.html')

    return (m)
Exemple #10
0
    def get_polygons_layer(self,
                           clus_polygon_gdf,
                           clus_category_df,
                           layer_name=None,
                           marker_color='#43d9de'):
        clus_polygon_gdf_json = clus_polygon_gdf.to_json()
        layer = folium.GeoJson(clus_polygon_gdf_json, name=layer_name)

        taret_idx = clus_polygon_gdf.index
        target_df = clus_category_df.loc[taret_idx, :]

        for idx in taret_idx:
            folium.RegularPolygonMarker(
                list(clus_polygon_gdf.loc[idx, 'centroid'])[::-1],
                fill_color=marker_color,
                radius=6,
                popup=folium.Popup(max_width=400).add_child(
                    folium.Vega(self.get_vincent_bar_chart(target_df, idx),
                                width=400,
                                height=270))).add_to(layer)
        return layer
    def add_marker(self, serie, longitude, latitude, arrondissement):
        liste_annee = []
        liste_valeur = []
        for annee in serie.index:
            liste_annee.append(annee)
        for valeur in serie.values:
            liste_valeur.append(valeur)

        scatter_points = {
            'x': liste_annee,
            'prix au m2': liste_valeur,
        }

        scatter_chart = vincent.Bar(scatter_points,
                                    iter_idx='x',
                                    width=300,
                                    height=200)
        scatter_chart.axis_titles(x='Année', y='Prix au m2')
        scatter_chart.legend(title=arrondissement)

        popup = folium.Popup()
        folium.Vega(scatter_chart, width=400, height=250).add_to(popup)
        folium.Marker([longitude, latitude], popup=popup).add_to(self.map)
def plotdataPopVega(data,vals):
    '''
    Fuction to create a data popup, as a time servies.
    What then can be added to a marker
    
    '''
    df=data[vals]
    
    df.fillna(value='null', inplace=True)  # Does not handle missing values.
    line=vincent.Line(df)
    line.axis_titles(x="Time", y="Mass Concentration")
    line.legend(title="Values")
   
    #find the lenght of the data
    width=len(df.index)
    if width <500:
        width=400
    
    line.width=width
    line.height=200
    vega = folium.Vega(json.loads(line.to_json()), width="30%", height="10%")
    popup = folium.Popup(max_width=line.width+75).add_child(vega)
    return popup
Exemple #13
0
def plot_bar_graphs(df_years, html_link, name, color):
    print('>plotting map...')
    listOfMedians = prepare_for_data(df_years)
    barGraphMap = Map(location = latlng, zoom_start = 10, tiles = 'Stamen Terrain')
    for x,y,df,file,station,ttip in zip(coords['Lat_DD'], coords['Long_DD'], listOfMedians, file_names, coords['Station Number'], coords['Station label']):
        bar = vincent.GroupedBar(df)
        bar.axis_titles(x = "Index", y = name)
        bar.width = 900
        bar.height = 250
        bar.legend(title='Year')
        bar.to_json(file)
        vis1 = os.path.join('/Users/fetch/Desktop/ProjectDirectory', file)
        folium.Marker(location=[x,y], 
                      icon = DivIcon(
            icon_size=(28,25),
            icon_anchor=(7, 20),
            html='<div style="font-family: Rockwell; font-size: 9pt; color :#00664b">'+str(station)+'</div>',
            ),
                      popup=folium.Popup(max_width=1100).add_child(
                              folium.Vega(json.load(open(vis1)), width= 1000, height=300))
                      ).add_to(barGraphMap)
        barGraphMap.add_child(folium.CircleMarker([x,y], fill_color = color, color = color, radius = 22, tooltip = ttip))
    
        barGraphMap.save(html_link+'.html')
Exemple #14
0
import folium
import os
import json

#create a map object
m = folium.Map(location=[12.971599, 77.594566], zoom_start=12)

# vega data - load from json file
vis = os.path.join('datasets', 'vis.json')

folium.Marker([12.97, 77.69],
              popup="<strong>Location 1</strong>",
              tooltip="Click for more Info").add_to(m)

folium.Marker([13.03, 77.55],
              popup="<strong>Location 2</strong>",
              tooltip="Click for more Info",
              icon=folium.Icon(icon='cloud')).add_to(m)
folium.Marker(
    [12.92, 77.67],
    popup=folium.Popup(max_width=450).add_child(
        folium.Vega(json.load(open(vis)), width=450, height=250)),
).add_to(m)

# generate html file corresponding this map
m.save('map.html')
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
###############################################################################
import json
import folium
buoy_map = folium.Map(location=[46.3014, -123.7390], zoom_start=7,tiles='Stamen Terrain')
popup1 = folium.Popup(max_width=800,).add_child(folium.Vega( json.load(open('/gdata/folium/data/vis1.json')), width=500, height=250))
folium.RegularPolygonMarker([47.3489, -124.708], fill_color='#43d9de', radius=12, popup=popup1).add_to(buoy_map)
###############################################################################
popup2 = folium.Popup(max_width=800,).add_child(folium.Vega(json.load(open('/gdata/folium/data/vis2.json')), width=500, height=250))
folium.RegularPolygonMarker([44.639, -124.5339], fill_color='#43d9de', radius=12, popup=popup2).add_to(buoy_map)
popup3 = folium.Popup(max_width=800,).add_child(folium.Vega(json.load(open('/gdata/folium/data/vis3.json')), width=500, height=250))
folium.RegularPolygonMarker([46.216, -124.1280], fill_color='#43d9de', radius=12, popup=popup3).add_to(buoy_map)
buoy_map.save('/tmp/folium_xx_NOAA_buoys.html')
###############################################################################
antarctic_ice_edge = '/gdata/folium/data/antarctic_ice_edge.json'
antarctic_ice_shelf_topo = '/gdata/folium/data/antarctic_ice_shelf_topo.json'
m = folium.Map(
    location=[-59.1759, -11.6016],
    tiles='Mapbox Bright',
    zoom_start=2
)
folium.GeoJson(
    antarctic_ice_edge,
    name='geojson'
).add_to(m)
folium.TopoJson(
    open(antarctic_ice_shelf_topo),
    'objects.antarctic_ice_shelf',
    name='topojson'
).add_to(m)
Exemple #16
0
                }, {
                    "domain": {
                        "data": "table",
                        "field": "data.col"
                    },
                    "name": "color",
                    "range": "category20",
                    "type": "ordinal"
                }],
                "width":
                400
            }
            #print(data)
            marker_data.append(json.dumps(data))
        #print('done')


get_data()

m = folium.Map(
    location=[59.3242, 18.0659],  # Stockholm
    zoom_start=12)

for data in marker_data:
    folium.Marker(location=[get_lat(), get_lon()],
                  popup=folium.Popup(max_width=450).add_child(
                      folium.Vega(data, width=450, height=250))).add_to(m)

#m
m.save('map.html')
Exemple #17
0
def map_chloro(index_layer, index_plot, min_plot, output_folder):
    """
    Create a Leaflet chloropeth map with Folium and Vega libraries. Each country has his own plot for the given data.
    :param index_layer: index of the data in the DATA_PATH csv
    :type index_layer: int
    :param index_plot: index of the data in the DATA_PATH csv
    :type index_plot: int
    :param min_plot: the minimal value of y axes for which the data will be process
    :type min_plot: float
    :param output_folder: name of the folder where to save the map
    :type output_folder: str
    :return: nothing
    :rtype: None
    """
    print('Loading capitals data...')

    # open the json file with the json data of capitals
    capitals_json = open('utilitaires/data/data_capitals.geojson')
    capitals = json.load(capitals_json)

    print("Loading countries data...")

    # open the json file with dates of quarantine
    country_json = open('utilitaires/data/data_country.geojson')
    pays = json.load(country_json)

    # gestion des titres pour la couche des pays
    if index_layer == 2:
        titre_layer = "Nouveaux cas recensés dans la journée d hier"
        titre_fichier = "nouveaux_cas"
    elif index_layer == 3:
        titre_layer = "Nouveaux décès recensés dans la journée d hier"
        titre_fichier = "nouveaux_deces"
    elif index_layer == 4:
        titre_layer = "Nombre de cas total recensés"
        titre_fichier = "cas_total"
    elif index_layer == 5:
        titre_layer = "Nombre de décès total recensés"
        titre_fichier = "deces_total"
    elif index_layer == 6:
        titre_layer = "Nombre de cas recensés la veillepour 10000 habitants"
        titre_fichier = "nouveaux_cas_10000"
    elif index_layer == 7:
        titre_layer = "Nombre de décès recensés la veille pour 10000 habitants"
        titre_fichier = "nouveaux_deces_10000"
    elif index_layer == 8:
        titre_layer = "Nombre total de cas pour 10000 habitants"
        titre_fichier = "cas_total_10000"
    elif index_layer == 9:
        titre_layer = "Nombre total de décès pour 10000 habitants"
        titre_fichier = "deces_total_10000"

    # gestion des titres pour les graphiques
    if index_plot == 2:
        x_plot = "Jours depuis le premier jour ayant " + str(
            min_plot) + " nouveaux cas recensés la veille"
        y_plot = "Nombre de nouveaux cas recensés la veille"
    elif index_plot == 3:
        x_plot = "Jours depuis le premier jour ayant " + str(
            min_plot) + " nouveaux décès recensés la veille"
        y_plot = "Nombre de nouveaux décès recensés la veille"
    elif index_plot == 4:
        x_plot = "Jours depuis un total de " + str(min_plot) + "  cas"
        y_plot = "Nombre de cas recensés "
    elif index_plot == 5:
        x_plot = "Jours depuis un total de " + str(min_plot) + "  décès"
        y_plot = "Nombre de décès recensés "
    elif index_plot == 6:
        x_plot = "Jours depuis le premier jour ayant " + str(
            min_plot) + " nouveaux cas recensés la veille pour 10000 habitants"
        y_plot = "Nombre de nouveaux cas recensés la veille pour 10000 habitants"
    elif index_plot == 7:
        x_plot = "Jours depuis le premier jour ayant " + str(
            min_plot
        ) + " nouveaux décès recensés la veille pour 10000 habitants"
        y_plot = "Nombre de nouveaux décès recensés la veille pour 10000 habitants"
    elif index_plot == 8:
        x_plot = "Jours depuis un total de " + str(
            min_plot) + "  cas pour 10000 habitants"
        y_plot = "Nombre de cas recensés pour 10000 habitants"
    elif index_plot == 9:
        x_plot = "Jours depuis un total de " + str(
            min_plot) + "  décès pour 10000 habitants"
        y_plot = "Nombre de décès recensés pour 10000 habitants"

    print("Processing your given dataset...")

    # création d'un fichier csv temporaire contenant les données pour la carte selon l'index_layer
    with open(DATA_PATH, 'r') as f:
        f_o = csv.reader(f)
        next(f_o)
        with open('data.csv', "w") as f_csv:
            writer = csv.writer(f_csv)
            writer.writerow(["Country", "Chiffre"])
            for line in f_o:
                # data.csv prend en valeur la date de la veille avec le nombre correspondant, hors World
                if line[0] == str(YESTERDAY_CUT) and line[1] != 'World':
                    writer.writerow([line[1], line[index_layer]])

    # ouverture et lecture du fichier csv créé
    data = f'data.csv'
    world_data = pd.read_csv(data)

    print("Creating the countries's layer of the map...")

    # initialisation de la carte et des paramètres généraux
    map = folium.Map(location=[48, 0], zoom_start=3)

    # création du fonds de carte coloré en fonction des valeurs de la veille
    folium.Choropleth(geo_data=pays,
                      name='choropleth',
                      data=world_data,
                      columns=['Country', 'Chiffre'],
                      key_on='feature.id',
                      fill_color='OrRd',
                      fill_opacity=0.7,
                      line_opacity=0.2,
                      legend_name=titre_layer).add_to(map)

    print("Processing plots for each country...")

    # création d'un point par pays (sur la capitale) pour accueillir les graphiques ensuite
    for pays in capitals["features"]:
        # création d'une liste vide qui accueillera un dictionnaire par jour pour le pays donné
        data_country = []
        # création d'un booléen pour savoir si le pays aura un graphique
        data_plot = False
        with open(DATA_PATH, 'r') as f_e:
            f_o = csv.reader(f_e)
            next(f_o)
            # la variable i permet non pas d'afficher le jour précis sur l'axe x, mais le numéro du jour en fonction
            # de la réalisation du paramètre min_plot
            i = 1
            for line in f_o:
                if pays['properties']['country'] == line[1] and float(
                        line[index_plot]) >= float(min_plot):
                    dico = {
                        "col": "Nombre",
                        "idx": i,
                        "val": float(line[index_plot])
                    }
                    data_country.append(dico)
                    i += 1
                    data_plot = True

    # créer le fichier json nécessaire à Vega pour faire les graphiques
        if data_plot:
            with open('country.json', "w") as f:
                data = {
                    "axes": [{
                        "scale": "x",
                        "title": x_plot,
                        "type": "x"
                    }, {
                        "scale": "y",
                        "title": y_plot,
                        "type": "y",
                        "grid": True
                    }],
                    "data": [{
                        "name": "table",
                        "values": data_country
                    }],
                    "height":
                    400,
                    "legends": [],
                    "marks": [{
                        "from": {
                            "data": "table",
                            "transform": [{
                                "keys": ["data.col"],
                                "type": "facet"
                            }]
                        },
                        "marks": [{
                            "properties": {
                                "enter": {
                                    "stroke": {
                                        "field": "data.col",
                                        "scale": "color"
                                    },
                                    "strokeWidth": {
                                        "value": 2
                                    },
                                    "x": {
                                        "field": "data.idx",
                                        "scale": "x"
                                    },
                                    "y": {
                                        "field": "data.val",
                                        "scale": "y"
                                    }
                                }
                            },
                            "type": "line"
                        }],
                        "type":
                        "group"
                    }],
                    "padding":
                    "auto",
                    "scales": [{
                        "domain": {
                            "data": "table",
                            "field": "data.idx"
                        },
                        "name": "x",
                        "range": "width",
                        "nice": True
                    }, {
                        "domain": {
                            "data": "table",
                            "field": "data.val"
                        },
                        "name": "y",
                        "nice": True,
                        "range": "height"
                    }, {
                        "domain": {
                            "data": "table",
                            "field": "data.col"
                        },
                        "name": "color",
                        "range": "category20",
                        "type": "ordinal"
                    }],
                    "width":
                    800
                }
                # écriture du dictionnaire dans un fichier json
                f.write(json.dumps(data))

            # ouverture et lecture de ce nouveau fichier json...
            with open('country.json', 'r') as f:
                data_json = json.load(f)

            custom_icon = folium.features.CustomIcon(
                icon_image='utilitaires/img/coro.png', icon_size=(14, 14))

            # ... pour le donner à folium.Vega dans le marker placé sur la capitale de chaque pays
            folium.Marker(location=pays['geometry']['coordinates'],
                          popup=folium.Popup(max_width=900).add_child(
                              folium.Vega(data_json, width=900, height=450)),
                          icon=custom_icon).add_to(map)

            os.remove('country.json')

    print("Creating the HTML file...")

    folium.LayerControl().add_to(map)

    os.mkdir(output_folder)
    map.save(output_folder + '/map_' + titre_fichier + '.html')

    country_json.close()
    capitals_json.close()

    os.remove('data.csv')
# -*- coding: utf-8 -*-
print('=' * 40)
print(__file__)
from helper.textool import get_tmp_file

################################################################################
import folium
import json
map_a = folium.Map(location=[46.3014, -123.7390],
                   zoom_start=7,
                   tiles='Stamen Terrain')
popup1 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(json.load(open('/gdata/folium/data/vis1.json')),
                width=500,
                height=250))

folium.RegularPolygonMarker([47.3489, -124.708],
                            fill_color='#ff0000',
                            radius=12,
                            popup=popup1).add_to(map_a)

################################################################################

popup2 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(json.load(open('/gdata/folium/data/vis2.json')),
                width=500,
                height=250))

folium.RegularPolygonMarker([44.639, -124.5339],
                            fill_color='#00ff00',
                            radius=12,
    'x': segment['Distance / km'],
    'y': segment['elevation'],
}

WIDTH = 400
HEIGHT = 200

line = vincent.Line(data, iter_idx="x", width=WIDTH, height=HEIGHT)
line.axis_titles(x='Distance / km', y='Elevation / m')
line.x_axis_properties(title_offset=2)
line.y_axis_properties(title_offset=-10)
line_json = line.to_json()
line_dict = json.loads(line_json)

popup = folium.Popup(max_width=WIDTH + 50, show=True)
chart = folium.Vega(line_dict, width=WIDTH + 50, height=HEIGHT + 50)
chart.add_to(popup)

marker = folium.Marker(
    location=segment['latlon'][idx],
    popup=popup,
    icon=folium.Icon(icon='star'),
)
marker.add_to(the_map)

# To store the map as a HTML page:
# the_map.save('map_006_chart1.html')

# To display the map in a Jupyter notebook:
the_map
def create_map(results, cities, statename, time):
    
    ## Gets the geoJSON for state and cities calling functions
    transformCities(cities)
    transformStates(statename)
    
    ## Creates the pup-up graph for the city results using vincent package
    ## looping over the results dictionary
    for cityid, df in results.iteritems():
        line = vincent.Line(df[['@realDonaldTrump', '@HillaryClinton']])
        line.axis_titles(x='date', y='normalized weighted composite score')
        line.legend(title='Queries')
        line.width=400
        line.height=200
        line.axes[0].properties = AxisProperties(
        labels=PropertySet(angle=ValueRef(value=45),
                           align=ValueRef(value='left')))
        line.colors(brew='Set1')
        line.to_json('data/'+cityid+time+'.json')

    ## Creates the map outline
    m = folium.Map([34.569728, -106.119447], tiles="Mapbox Bright", zoom_start=5, min_zoom=5)
    fg = folium.map.FeatureGroup().add_to(m)
    
    ## Adds the states looping over the transformed GeoJSON file
    ## and sets colour based on time string 'after' for states of
    ## California and Texas
    geo_json_states = json.load(open('data/us_states/us_states.json'))
    for feature in geo_json_states['features']:
        if time == "after" and feature['properties']['NAME'] == 'California':
            fg.add_child(MultiPolygon(_locations_mirror(feature['geometry']['coordinates']),
                                   color='blue', weight=0))
        elif time == "after" and feature['properties']['NAME'] == 'Texas':
            fg.add_child(MultiPolygon(_locations_mirror(feature['geometry']['coordinates']),
                                   color='red', weight=0))
        else:
            fg.add_child(MultiPolygon(_locations_mirror(feature['geometry']['coordinates']),
                                   color='grey', weight=0))
    
    ## Add the cities layer looping over the transformed GeoJSON file
    geo_json_cities = json.load(open('data/us_cities/us_cities.json'))
    for feature in geo_json_cities['features']:
        
        ## Sets colour variable based on most positive nwcs in the analysis
        ## timeframe
        places = open('data/' + cities, 'r')
        for line in places:
            attr = line.split(";")
            if attr[0] == feature['properties']['NAME10']:
                city_id = attr[1]
        
        if sum(results[city_id]['@realDonaldTrump']) > sum(results[city_id]['@HillaryClinton']):
            colour = 'red'
        else:
            colour = 'blue'
        
        ## Adds the polygon with the set colour
        fg.add_child(MultiPolygon(
        _locations_mirror(feature['geometry']['coordinates']),
        color=colour,
        weight=0,
        popup = folium.Popup(max_width=650).add_child(folium.Vega(json.load(open('data/'+city_id+time+'.json')),
                                                                  width=620, height=270)),))
    # Saves the map in html format using the string time in filename                                                            
    m.save('sentiment_'+time+'.html')
Exemple #21
0
                   title_cancel='Exit me',
                   force_separate_button=True).add_to(stamen)

FloatImage(url1, bottom=0.08, left=87.4).add_to(stamen)

FloatImage(url2, bottom=19, left=82.5).add_to(stamen)

FloatImage(url3, bottom=93, left=7.7).add_to(stamen)

plugins.Search(yamunanagar, search_zoom=10, geom_type='Polygon').add_to(stamen)

folium.Marker(location=[30.50666, 76.52114],
              icon=icon1,
              popup=folium.Popup(max_width=500).add_child(
                  folium.Vega(json.load(open(interpolate)),
                              width=500,
                              height=260))).add_to(stamen)

folium.CircleMarker(location=[30.445122, 76.672211],
                    radius=13,
                    fill_color='purple',
                    color='purple',
                    popup=folium.Popup(max_width=500).add_child(
                        folium.Vega(json.load(open(stroke)),
                                    width=500,
                                    height=260))).add_to(stamen)

folium.Marker(location=[30.423809, 76.522522],
              icon=icon2,
              popup=folium.Popup(max_width=500).add_child(
                  folium.Vega(json.load(open(interpolate)),
        radius=75,
        location=row,
        popup='This is the sensing radius',
        color='#3186cc',
        fill=True,
        fill_color='#3186cc'
    ).add_to(Radii)


# test markers for vega/altair visualization:
folium.Marker(
    location=[6.942236, 80.615474],
    icon=folium.Icon(color='blue', icon='bar-chart',
                     prefix='fa'),
    popup=folium.Popup(max_width=500).add_child(
        folium.Vega(vis1, width=500, height=250))
).add_to(dat_grphs)

folium.Marker(
    location=[6.941506, 80.619474],
    icon=folium.Icon(color='blue', icon='bar-chart',
                     prefix='fa'),
    popup=folium.Popup(max_width=500).add_child(
        folium.Vega(vis2, width=500, height=250))
).add_to(dat_grphs)

folium.Marker(
    location=[6.942936, 80.610974],
    icon=folium.Icon(color='blue', icon='bar-chart',
                     prefix='fa'),
    popup=folium.Popup(max_width=500).add_child(
Exemple #23
0
folium.Marker([-1.307466,36.826537],
    popup='<strong>Location Three</strong>',
    tooltip=tooltip,
    icon=folium.Icon(icon='cloud',color='red')
    ).add_to(myMap)

folium.Marker([-1.304481,36.823405],
    popup='<strong>Location Four</strong>',
    tooltip=tooltip,
    icon=customIcon
    ).add_to(myMap)

# 1.303683, 36.824670

folium.Marker([-1.303683,36.824670],
    popup=folium.Popup(max_width=450).add_child(folium.Vega(json.load(open(vis)),width=450,height=250))
    ).add_to(myMap)


# Encircle a region
folium.CircleMarker(
    location=[-1.311509,36.814945],
    radius=50,
    color='#42bca',
    fill=True,
    popup="Qwetu Wilson View",
    fill_color="#42bca"
).add_to(myMap)


#Load GeoJSON
import os
import json
import requests
import folium

url = 'https://raw.githubusercontent.com/python-visualization/folium/master/examples/data'
vis1 = json.loads(requests.get(f'{url}/vis1.json').text)
vis2 = json.loads(requests.get(f'{url}/vis2.json').text)
vis3 = json.loads(requests.get(f'{url}/vis3.json').text)

# 在图中标记三个位置
m = folium.Map(location=[46.3014, -123.7390],
               zoom_start=7,
               tiles='Stamen Terrain')

folium.Marker(location=[47.3489, -124.708],
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(vis1, width=450, height=250))).add_to(m)

folium.Marker(location=[44.639, -124.5339],
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(vis2, width=450, height=250))).add_to(m)

folium.Marker(location=[46.216, -124.1280],
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(vis3, width=450, height=250))).add_to(m)

m.save("test1.html")
Exemple #25
0
chania.height = 200

platanias = vincent.StackedBar(df_platanias)
platanias.axis_titles(x='Tierarten', y='Anzahl Operationen')
platanias.legend(title='platanias')
platanias.scales['x'].padding = 0.2
platanias.colors(brew='Pastel1')
platanias.width = 350
platanias.height = 200

kreta = folium.Map(location=[35.3220, 25.1001],
                   tiles="Stamen Terrain",
                   zoom_start=8)

popup1 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(heraklion, width=500, height=250))

popup2 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(agiosNikolaos, width=500, height=250))

popup3 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(sitia, width=500, height=250))

popup4 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(kalyves, width=500, height=250))

popup5 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(rethymno, width=500, height=250))

popup6 = folium.Popup(max_width=800, ).add_child(
    folium.Vega(chania, width=500, height=250))
Exemple #26
0
import pandas as pd
import vincent

sbucks = pd.read_csv('starbucks_india.csv')

map_mumbai = folium.Map(location=[19.0760, 72.8777])

for index, row in sbucks.iterrows():
    lis = [
        row['Mon'], row['Tue'], row['Wed'], row['Thu'], row['Fri'], row['Sat'],
        row['Sun']
    ]
    x = range(len(lis))
    bar = vincent.Bar(lis, width=440, height=200)
    bar.axis_titles(x='Day of Week - ' + row['Name'], y='Foot fall')
    bar.to_json('vega.json')
    popup_ = folium.Popup(max_width=800).add_child(
        folium.Vega(bar, width=500, height=250))
    if sum(lis) > 2600:
        folium.Marker([row['Latitude'], row['Longitude']],
                      popup=popup_,
                      icon=folium.Icon(color='red',
                                       icon='star')).add_to(map_mumbai)
    else:
        folium.Marker([row['Latitude'], row['Longitude']],
                      popup=popup_,
                      icon=folium.Icon(color='green',
                                       icon='star-empty')).add_to(map_mumbai)

map_mumbai.save('starbucks_india.html')
coordinates = (20.5937, 78.9629)
map1 = folium.Map(location=coordinates, zoom_start=4.5)
cases_num = df_list[0]["Total Confirmed cases*"]

# In[13]:

labels = ["Total Confirmed cases*", "Cured/Discharged/Migrated", "Death"]
sizes = [
    df_list[0]["Total Confirmed cases*"][36],
    df_list[0]["Cured/Discharged/Migrated*"][36], df_list[0]["Deaths**"][36]
]
data = {labels[0]: sizes[0], labels[1]: sizes[1], labels[2]: sizes[2]}
a = vincent.Pie(data, width=500, height=300)
a.legend("Covid 19 India")
popup = folium.Popup(width=500, height=100)
folium.Vega(a).add_to(popup)

# In[14]:


def popups(id):
    labels = ["Total Confirmed cases", "Cured/Discharged/Migrated", "Death"]
    sizes = [
        df_list[0]["Total Confirmed cases*"][id],
        df_list[0]["Cured/Discharged/Migrated*"][id],
        df_list[0]["Deaths**"][id]
    ]
    data = {labels[0]: sizes[0], labels[1]: sizes[1], labels[2]: sizes[2]}
    a = vincent.Pie(data, width=500, height=300)
    a.legend(state["Name"][i])
    popup = folium.Popup(width=550, height=100)
Exemple #28
0
# macro = MacroElement()
# macro._template = Template(template)

# m.get_root().add_child(macro)

# m
#End of adding legend

#Adding graph

#Graph feature
df = pd.read_csv("sample1.csv")
print(df.to_string())
# Let's create the vincent chart.
scatter_chart = vincent.Bar(df[['Concentration']], width=600,
                            height=300).axis_titles(x='Days',
                                                    y='Concentrations')
# Let's convert it to JSON.
scatter_json = scatter_chart.to_json()
# Let's convert it to dict.
scatter_dict = json.loads(scatter_json)
# m = folium.Map([43, -100], zoom_start=4)
# Let's create a Vega popup based on df.
popup = folium.Popup(max_width=650)
folium.Vega(scatter_json, height=350, width=650).add_to(popup)
folium.Marker([51.525211, -0.033503], popup=popup).add_to(m)
#Graph feature ends

m.save('map.html')  #Render map
print('Map rendering completed')
Exemple #29
0
import folium
import pandas as pd
import vincent

sbucks = pd.read_csv('starbucks_india.csv')

map_pune = folium.Map(location = [18.5204, 73.8567])

for index, row in sbucks.iterrows():
    lis = [row['Mon'], row['Tue'], row['Wed'], row['Thu'], row['Fri'], row['Sat'], row['Sun']]
    x = range(len(lis))
    bar = vincent.Bar(lis, width=440, height=200)
    bar.axis_titles(x='Day of week - ' +row['Name'], y='Foot fall')
    bar.to_json('vega.json')
    popup_ = folium.Popup(max_width=800).add_child(folium.Vega(bar, width=500, height=250))
    
    if sum(lis) > 2600:
        folium.Marker([row['Latitude'], row['Longitude']], popup=popup_,icon=folium.Icon(color='red', icon='star')).add_to(map_pune)
    else:
        folium.Marker([row['Latitude'], row['Longitude']], popup=popup_,icon=folium.Icon(color='green', icon='star-empty')).add_to(map_pune)

map_pune.save('starbucks_india_pune.html')
Exemple #30
0
vis2 = os.path.join('data', 'vis2.json')
vis3 = os.path.join('data', 'vis3.json')
vis4 = os.path.join('data', 'vis4.json')
vis5 = os.path.join('data', 'vis5.json')
vis6 = os.path.join('data', 'vis6.json')
vis7 = os.path.join('data', 'vis7.json')
vis8 = os.path.join('data', 'vis8.json')
vis9 = os.path.join('data', 'vis9.json')

overlay = os.path.join('data', 'overlay.json')

folium.Marker([44.78964787826317, 20.4664977583781],
              tooltip='Autokomanda',
              icon=folium.Icon(prefix='fa', icon='bus', markerColor='red'),
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(json.load(open(vis9)), width=450,
                              height=280))).add_to(m),
folium.Marker([44.75617744172545, 20.4769512336477],
              tooltip='Banjica',
              icon=folium.Icon(prefix='fa', icon='bus', markerColor='blue'),
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(json.load(open(vis8)), width=450,
                              height=280))).add_to(m),
folium.Marker([44.768087391424814, 20.49229493597008],
              tooltip='Brace Jerkovic',
              icon=folium.Icon(prefix='fa', icon='bus', markerColor='green'),
              popup=folium.Popup(max_width=450).add_child(
                  folium.Vega(json.load(open(vis7)), width=450,
                              height=280))).add_to(m),
folium.Marker([44.8157349019317, 20.491060018369023],
              tooltip='Bogoslovija',
              icon=folium.Icon(prefix='fa', icon='bus', markerColor='purple'),