def test_attack_continue(bn_adversarial): adv = bn_adversarial attack1 = BlendedUniformNoiseAttack() attack1(adv) d1 = adv.distance.value attack2 = HopSkipJumpAttack() attack2(adv, iterations=20, verbose=True) assert adv.perturbed is not None assert adv.distance.value < np.inf assert adv.distance.value < d1
def test_attack_linf_targeted(bn_adversarial): adv = bn_adversarial attack = HopSkipJumpAttack(distance=Linf) o = adv.unperturbed np.random.seed(2) starting_point = np.random.uniform(0, 1, size=o.shape).astype(o.dtype) attack( adv, iterations=21, starting_point=starting_point, log_every_n_steps=2, gamma=0.01, stepsize_search="grid_search", batch_size=128, initial_num_evals=200, max_num_evals=20000, verbose=True, ) assert adv.perturbed is not None assert adv.distance.value < np.inf
def test_attack_impossible(bn_impossible): adv = bn_impossible attack = HopSkipJumpAttack() attack(adv, iterations=200, verbose=True) assert adv.perturbed is None assert adv.distance.value == np.inf
def test_attack_gl(gl_bn_adversarial): adv = gl_bn_adversarial attack = HopSkipJumpAttack() attack(adv, iterations=200, verbose=True) assert adv.perturbed is not None assert adv.distance.value < np.inf
def test_attack_non_verbose(bn_adversarial): adv = bn_adversarial attack = HopSkipJumpAttack() attack(adv, iterations=20, verbose=False) assert adv.perturbed is not None assert adv.distance.value < np.inf