def setUp(self): self.analysis_model = AnalysisModel() self.analysis_model.header = ["x", "y", "compound"] self.analysis_model.notify((2.1, 56, "CO")) self.analysis_model.notify((1.23, 51.2, "CO2")) self.results_table = ResultsTable(analysis_model=self.analysis_model)
def test_write(self): with mock.patch.object(AnalysisModel, "dump_csv") as mock_csv: AnalysisModel().write("filename.csv") mock_csv.assert_called_with("filename.csv", mode="w") with mock.patch.object(AnalysisModel, "dump_json") as mock_json: AnalysisModel().write("filename.json") mock_json.assert_called_with("filename.json", mode="w") error = "AnalysisModel can only write to .json or .csv formats." with self.assertRaisesRegex(IOError, error): AnalysisModel().write("filename.format")
def setUp(self): self.analysis_model = AnalysisModel( header=['parameter_1', 'parameter_2', 'kpi_1'], _evaluation_steps=[('A', 1.45, 10), ('A', 5.11, 12), ('B', 4.999, 17), ('B', 4.998, 22)], _step_metadata=[{ 'curve_1': [[0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9]] }, { 'curve_1': [[0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9]], 'curve_2': [[0, 1, 2, 3, 4, 5], [0.11, 0.19, 0.3, 0.6, 0.7, 0.8]] }, {}, {}]) curve_plot = LinePlotConfig(title='Dummy data', x_label='Time (s)', y_label='Height (mm)', line_config={ 'curve_1': { 'line_style': 'solid', 'color': 'red' }, 'curve_2': { 'line_style': 'dash', 'color': 'black' } }) self.plot = ScatterLinePlot( line_title='Metadata', analysis_model=self.analysis_model, line_plot_configs=[curve_plot], )
def setUp(self): self.model = AnalysisModel() self.header = ("a", "b", "c") self.data = ((1, 2, 3), (4, 5, 6)) self.metadata = ({}, {'d': 10}) self.state_dict = { "header": self.header, "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "2": { 'data': self.data[1], 'metadata': self.metadata[1] } }
def setUp(self): self.analysis_model = AnalysisModel( header=['parameter_1', 'parameter_2', 'salt', 'kpi_1'], _evaluation_steps=[('A', 1.45, 0.5, 10), ('A', 5.11, 1.0, 12), ('B', 4.999, 1.1, 17), ('B', 4.998, 2.0, 22)] ) self.plot = CurveScatterPlot( analysis_model=self.analysis_model )
def setUp(self): self.base_table_row = FormulationTableRow( chemical='parameter_1') self.analysis_model = AnalysisModel( header=['parameter_1', 'parameter_2', 'salt', 'kpi_1'], _evaluation_steps=[('A', 1.45, 0.5, 10), ('A', 5.11, 1.0, 12), ('B', 4.999, 1.1, 17), ('B', 4.998, 2.0, 22)] ) self.data_view = FormulationDataView( analysis_model=self.analysis_model )
def setUp(self): self.analysis_model = AnalysisModel( header=['parameter_1', 'parameter_2', 'kpi_1'], _evaluation_steps=[('A', 1.45, 10), ('A', 5.11, 12), ('B', 4.999, 17), ('B', 4.998, 22)], _step_metadata=[ { 'height_profile': [ [0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9] ] }, { 'height_profile': [ [0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9] ], 'ref_height_profile': [ [0, 1.1, 2.2, 3.3, 4.4, 5.5], [0.11, 0.22, 0.5, 0.7, 0.8, 0.9] ] }, { 'height_profile': [ [0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9] ], 'ref_height_profile': [ [0, 0.9, 2, 3, 3.8, 5.2], [0.14, 0.24, 0.6, 0.71, 0.84, 0.97] ], 'temp_profile': [ [0, 1, 2, 3, 4, 5], [0.1, 0.2, 0.4, 0.7, 0.8, 0.9] ], 'ref_temp_profile': [ [0, 0.9, 2, 3, 3.8, 5.2], [0.14, 0.24, 0.6, 0.71, 0.84, 0.97] ] }, {}] ) self.data_view = PUFoamDataView( analysis_model=self.analysis_model )
def get_probe_wfmanager_tasks(wf_manager=None, contributed_uis=None): # Returns the Setup and Review Tasks, with a mock TaskWindow and dummy # Application which does not have an event loop. if wf_manager is None: wf_manager = DummyWfManager() analysis_model = AnalysisModel() workflow_model = Workflow() factory_registry_plugin = ProbeFactoryRegistry() if contributed_uis is None: contributed_uis = [DummyContributedUI()] wf_manager.factory_registry = factory_registry_plugin setup_test = WfManagerSetupTask( analysis_model=analysis_model, workflow_model=workflow_model, factory_registry=factory_registry_plugin, contributed_uis=contributed_uis, ) review_task = WfManagerReviewTask( analysis_model=analysis_model, workflow_model=workflow_model, factory_registry=factory_registry_plugin, ) tasks = [setup_test, review_task] mock_window = mock.Mock(spec=TaskWindow) mock_window.tasks = tasks mock_window.application = wf_manager for task in tasks: task.window = mock_window task.create_central_pane() # A Task's central pane is generally aware of its task in normal # operations, but it doesn't seem to be so in this mock situation; # so we "make" it aware. if hasattr(task, "central_pane") and task.central_pane is not None: task.central_pane.task = task task.create_dock_panes() return tasks[0], tasks[1]
class TestConvergencePlot(unittest.TestCase): def setUp(self): self.analysis_model = AnalysisModel() self.data_view = SamplingDataView(analysis_model=self.analysis_model) self.plot = self.data_view.sampling_plot self.analysis_model.notify(("x", "y", "E")) def check_update_is_requested_and_apply(self): # check self.assertTrue(self.plot.update_required) self.assertTrue(self.plot.plot_updater.active) # update self.plot._update_displayable_value_names() self.plot._update_plot() self.plot.update_required = False def add_data_points(self): # non monotonic convergence for datum in [ (1, 3, 8), (2, 5, 7.7), (3, 2.6, 7.6), (4, 2.5, 7.62), (5, 2.47, 7.543), (6, 2.465, 7.54)]: self.analysis_model.notify(datum) self.check_update_is_requested_and_apply() def test_init(self): self.analysis_model.notify((1.0, 1.0, 1.0)) self.plot._update_displayable_value_names() self.assertIsInstance(self.plot._axis, LinePlot) self.assertEqual('iteration', self.plot._plot.x_axis.title) def test_resize_plot(self): ranges = self.plot.recenter_plot() self.assertEqual(ranges, (0.0, 1.0, -0.1, 1)) self.add_data_points() self.plot._update_plot() ranges = self.plot._get_plot_range() # the second value for y (5) shouldn't contribute to the running min. self.assertEqual(3.1, ranges[3]) self.assertEqual('iteration', self.plot._plot.x_axis.title) def test_change_variable(self): self.add_data_points() self.plot._update_plot() self.assertListEqual( [3, 3, 2.6, 2.5, 2.47, 2.465], self.plot._custom_data_array) self.plot.y = "E" self.assertListEqual( [8, 7.7, 7.6, 7.6, 7.543, 7.54], self.plot._custom_data_array)
def test__add_data(self): with mock.patch.object(AnalysisModel, "_add_cell") as mock_cell: model = AnalysisModel() model._add_data({"name": "value"}) mock_cell.assert_called_with("name", "value") with mock.patch.object(AnalysisModel, "_add_cells") as mock_cells, mock.patch.object( AnalysisModel, "_finalize_row"): model = AnalysisModel() model._add_data(["data", "entries"]) mock_cells.assert_called_with(["data", "entries"]) self.model._add_header(self.header) self.model._add_data({"a": 1}) self.model._add_data({"c": 2}) self.model._add_data([3, 4]) self.assertEqual(1, len(self.model.evaluation_steps)) self.assertTupleEqual((3, 4, 2), self.model.evaluation_steps[0]) self.assertDictEqual(self.model._row_data, self.model._row_data_default())
class TestResultsTable(unittest.TestCase): def setUp(self): self.analysis_model = AnalysisModel() self.analysis_model.header = ["x", "y", "compound"] self.analysis_model.notify((2.1, 56, "CO")) self.analysis_model.notify((1.23, 51.2, "CO2")) self.results_table = ResultsTable(analysis_model=self.analysis_model) def test_columns(self): self.assertEqual(len(self.results_table.columns), 3) self.assertEqual(self.results_table.columns[2].label, "compound") def test_value(self): column_2 = self.results_table.columns[2] row_1 = self.analysis_model.evaluation_steps[1] self.assertEqual(column_2.get_value(row_1), "CO2") def test_append_evaluation_steps(self): self.analysis_model.notify((1.5, 50, "CO")) self.assertEqual(self.results_table.rows[2], (1.5, 50, "CO")) def test_selection(self): # From table to the model self.assertIsNone(self.analysis_model.selected_step_indices) self.results_table._selected_rows = [(2.1, 56, "CO")] self.assertEqual(self.analysis_model.selected_step_indices, [0]) self.results_table._selected_rows = [(1.23, 51.2, "CO2")] self.assertEqual(self.analysis_model.selected_step_indices, [1]) self.results_table._selected_rows = [] self.assertIsNone(self.analysis_model.selected_step_indices) # From model to the table self.analysis_model.selected_step_indices = [1] self.assertEqual(self.results_table._selected_rows, [(1.23, 51.2, "CO2")]) self.analysis_model.selected_step_indices = [0, 1] self.assertEqual( self.results_table._selected_rows, [(2.1, 56, "CO"), (1.23, 51.2, "CO2")], ) self.analysis_model.selected_step_indices = None self.assertEqual(self.results_table._selected_rows, [])
def test___getstate__(self): self.model.notify(self.header) for entry, meta in zip(self.data, self.metadata): self.model.notify(meta, metadata=True) self.model.notify(entry) state = self.model.__getstate__() self.assertDictEqual( { "header": self.header, 1: { 'data': self.data[0], 'metadata': self.metadata[0] }, 2: { 'data': self.data[1], 'metadata': self.metadata[1] } }, state) with mock.patch.object(AnalysisModel, "__getstate__") as mock_getstate: AnalysisModel().to_json() mock_getstate.assert_called_once()
def setUp(self): super().setUp() self.analysis_model = AnalysisModel() self.plot = self.plot_cls(analysis_model=self.analysis_model) self.mock_path = '.'.join( [self.plot.__class__.__module__, self.plot.__class__.__name__])
def setUp(self): self.analysis_model = AnalysisModel() self.data_view = SamplingDataView(analysis_model=self.analysis_model) self.plot = self.data_view.sampling_plot self.analysis_model.notify(("x", "y", "E"))
def _analysis_model_default(self): return AnalysisModel()
def test_json(self): error = ("AnalysisModel can't be instantiated from a data dictionary" " that does not contain a header.") with LogCapture() as capture: with self.assertRaisesRegex(KeyError, error): AnalysisModel().from_json({ "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "2": { 'data': self.data[1], 'metadata': self.metadata[1] } }) capture.check(( "force_wfmanager.model.analysis_model", "ERROR", "AnalysisModel can't be instantiated from a data dictionary " "that does not contain a header.", )) with mock.patch.object(AnalysisModel, "clear") as mock_clear: model = AnalysisModel() model.from_json(self.state_dict) mock_clear.assert_called_once() self.model.from_json(self.state_dict) self.assertTupleEqual(self.model.header, self.header) self.assertEqual(2, len(self.model.evaluation_steps)) self.assertEqual(2, len(self.model.step_metadata)) self.assertTupleEqual(self.data[0], self.model.evaluation_steps[0]) self.assertDictEqual(self.metadata[0], self.model.step_metadata[0]) self.assertTupleEqual(self.data[1], self.model.evaluation_steps[1]) self.assertDictEqual(self.metadata[1], self.model.step_metadata[1]) tmp_file = tempfile.NamedTemporaryFile() filename = tmp_file.name self.model.dump_json(filename) with open(filename) as f: json_data = json.load(f) self.assertDictEqual( { "header": list(self.header), "1": { 'data': list(self.data[0]), 'metadata': self.metadata[0] }, "2": { 'data': list(self.data[1]), 'metadata': self.metadata[1] } }, json_data) self.model._export_enabled = False self.assertFalse(self.model.dump_json(None)) state_dict = { "header": self.header, "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "3": { 'data': self.data[1], 'metadata': self.metadata[1] } } with LogCapture() as capture: AnalysisModel().from_json(state_dict) capture.check(( "force_wfmanager.model.analysis_model", "WARNING", "Can't find a row with index 2. This index will " "be skipped in the AnalysisModel.", )) with self.subTest("Check deprecated formats"): # TODO: This test can be removed when issue #414 # is resolved state_dict = {"header": self.header, "1": list(self.data[0])} with LogCapture() as capture: model = AnalysisModel() model.from_json(state_dict) capture.check(( "force_wfmanager.model.analysis_model", "WARNING", "Project file format is deprecated and will" " be removed in version 0.7.0", )) self.assertDictEqual( { "header": self.header, 1: { "data": self.data[0], "metadata": {} } }, model.__getstate__())
class TestAnalysisModel(TestCase): def setUp(self): self.model = AnalysisModel() self.header = ("a", "b", "c") self.data = ((1, 2, 3), (4, 5, 6)) self.metadata = ({}, {'d': 10}) self.state_dict = { "header": self.header, "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "2": { 'data': self.data[1], 'metadata': self.metadata[1] } } def test_initialize(self): self.assertEqual(tuple(), self.model.header) self.assertFalse(self.model.export_enabled) self.assertFalse(self.model._export_enabled) self.assertEqual([], self.model.evaluation_steps) self.assertEqual([], self.model._evaluation_steps) self.assertDictEqual(self.model._row_data, {}) def test__add_header(self): self.model._add_header(self.header) self.assertTupleEqual(self.header, self.model.header) self.assertDictEqual(dict.fromkeys(self.header), self.model._row_data) wrong_header = 1 log_error = ( f"The Header of the AnalysisModel can't be defined by " f"the {wrong_header}. A list or tuple of strings is required.") with LogCapture() as capture: with self.assertRaises(TraitError): self.model._add_header(wrong_header) capture.check( ("force_wfmanager.model.analysis_model", "ERROR", log_error)) def test_header_update(self): self.model.from_json(self.state_dict) self.assertTupleEqual(self.model.header, self.header) self.model.header = ("new", ) self.assertTupleEqual(self.model.header, ("new", )) self.assertEqual([], self.model.evaluation_steps) self.assertEqual([], self.model.step_metadata) def test__add_cell(self): self.model._add_header(self.header) self.model._add_cell(label="a", value="1") self.assertEqual("1", self.model._row_data["a"]) self.assertIsNone(self.model._row_data["b"]) self.assertIsNone(self.model._row_data["c"]) label, value = "d", "2" log_warning = (f"The AnalysisModel does not have the {label} column." f"The value {value} has not been added to the table.") with LogCapture() as capture: self.model._add_cell(label=label, value=value) capture.check(( "force_wfmanager.model.analysis_model", "WARNING", log_warning, )) self.assertEqual("1", self.model._row_data["a"]) self.assertIsNone(self.model._row_data["b"]) self.assertIsNone(self.model._row_data["c"]) def test__add_cells(self): self.model._add_header(self.header) data = [] self.model._add_cells(data) self.assertIsNone(self.model._row_data["a"]) self.assertIsNone(self.model._row_data["b"]) self.assertIsNone(self.model._row_data["c"]) data = (1, 2) self.model._add_cells(data) self.assertEqual(1, self.model._row_data["a"]) self.assertEqual(2, self.model._row_data["b"]) self.assertIsNone(self.model._row_data["c"]) data = (1, 2, 3, 4) self.model._add_cells(data) self.assertEqual(1, self.model._row_data["a"]) self.assertEqual(2, self.model._row_data["b"]) self.assertEqual(3, self.model._row_data["c"]) def test_finalize_row(self): self.model._add_header(self.header) data = (1, 2, 3) self.model._add_cells(data) self.model._finalize_row() self.assertEqual(1, len(self.model.evaluation_steps)) self.assertEqual(1, len(self.model.step_metadata)) self.assertTupleEqual(data, self.model.evaluation_steps[0]) self.assertDictEqual({}, self.model.step_metadata[0]) self.assertDictEqual(self.model._row_data, self.model._row_data_default()) self.assertDictEqual(self.model._row_metadata, self.model._row_metadata_default()) data = (1, 2) self.model._add_cells(data) self.model._add_metadata({'extra': 7}) self.model._finalize_row() self.assertEqual(2, len(self.model.evaluation_steps)) self.assertEqual(2, len(self.model.step_metadata)) self.assertTupleEqual((1, 2, None), self.model.evaluation_steps[1]) self.assertDictEqual({'extra': 7}, self.model.step_metadata[1]) self.assertDictEqual(self.model._row_data, self.model._row_data_default()) self.assertDictEqual(self.model._row_metadata, self.model._row_metadata_default()) def test__add_data(self): with mock.patch.object(AnalysisModel, "_add_cell") as mock_cell: model = AnalysisModel() model._add_data({"name": "value"}) mock_cell.assert_called_with("name", "value") with mock.patch.object(AnalysisModel, "_add_cells") as mock_cells, mock.patch.object( AnalysisModel, "_finalize_row"): model = AnalysisModel() model._add_data(["data", "entries"]) mock_cells.assert_called_with(["data", "entries"]) self.model._add_header(self.header) self.model._add_data({"a": 1}) self.model._add_data({"c": 2}) self.model._add_data([3, 4]) self.assertEqual(1, len(self.model.evaluation_steps)) self.assertTupleEqual((3, 4, 2), self.model.evaluation_steps[0]) self.assertDictEqual(self.model._row_data, self.model._row_data_default()) def test__add_metadata(self): self.model._add_metadata({"a": 1}) self.assertDictEqual({"a": 1}, self.model._row_metadata) self.model._add_metadata({"a": 1, "c": 2}) self.assertDictEqual({"a": 1, "c": 2}, self.model._row_metadata) self.model._add_metadata([(3, 2, 5)]) self.assertDictEqual({"a": 1, "c": 2}, self.model._row_metadata) def test__add_evaluation_step(self): with self.assertRaisesRegex( ValueError, "Cannot add evaluation step to an empty Analysis model"): self.model._add_evaluation_step(None) self.model.notify(["column"]) step = (1, 2) error = ("Size of evaluation step is incompatible with the length of " "the header.") with self.assertRaisesRegex(ValueError, error): self.model._add_evaluation_step(step) step = (1, ) self.model._add_evaluation_step(step) self.assertEqual(1, len(self.model.evaluation_steps)) self.assertTupleEqual(self.model.evaluation_steps[0], step) self.assertTrue(self.model.export_enabled) def test_notify(self): with mock.patch.object(AnalysisModel, "_add_header") as mock_header: model = AnalysisModel() model.notify(None) mock_header.assert_called_once() with mock.patch.object( AnalysisModel, "_add_header") as mock_header, mock.patch.object( AnalysisModel, "_add_metadata") as mock_metadata, mock.patch.object( AnalysisModel, "_add_data") as mock_data: model = AnalysisModel() model.notify(None) # This line is necessary because the header must be set # in order to add data to the model. model.header = ("", ) model.notify(None, metadata=True) model.notify(None) mock_header.assert_called_once() mock_metadata.assert_called_once() mock_data.assert_called_once() def test_column(self): self.model.from_json(self.state_dict) column_by_id = self.model.column(0) column_by_label = self.model.column("a") self.assertListEqual(column_by_id, column_by_label) self.assertListEqual(column_by_label, [1, 4]) column_by_id = self.model.column(-1) column_by_label = self.model.column("c") self.assertListEqual(column_by_id, column_by_label) self.assertListEqual(column_by_label, [3, 6]) error = ("Column of the AnalysisModel with label 2" " doesn't exist. The label must be a string or int.") with self.assertRaisesRegex(ValueError, error): self.model.column("2") error = ("Column of the AnalysisModel with label 100" " doesn't exist. The label must be a string or int.") with self.assertRaisesRegex(ValueError, error): self.model.column(100) def test_is_empty(self): self.assertTrue(self.model.is_empty) self.model.from_json(self.state_dict) self.assertFalse(self.model.is_empty) def test___getstate__(self): self.model.notify(self.header) for entry, meta in zip(self.data, self.metadata): self.model.notify(meta, metadata=True) self.model.notify(entry) state = self.model.__getstate__() self.assertDictEqual( { "header": self.header, 1: { 'data': self.data[0], 'metadata': self.metadata[0] }, 2: { 'data': self.data[1], 'metadata': self.metadata[1] } }, state) with mock.patch.object(AnalysisModel, "__getstate__") as mock_getstate: AnalysisModel().to_json() mock_getstate.assert_called_once() def test_json(self): error = ("AnalysisModel can't be instantiated from a data dictionary" " that does not contain a header.") with LogCapture() as capture: with self.assertRaisesRegex(KeyError, error): AnalysisModel().from_json({ "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "2": { 'data': self.data[1], 'metadata': self.metadata[1] } }) capture.check(( "force_wfmanager.model.analysis_model", "ERROR", "AnalysisModel can't be instantiated from a data dictionary " "that does not contain a header.", )) with mock.patch.object(AnalysisModel, "clear") as mock_clear: model = AnalysisModel() model.from_json(self.state_dict) mock_clear.assert_called_once() self.model.from_json(self.state_dict) self.assertTupleEqual(self.model.header, self.header) self.assertEqual(2, len(self.model.evaluation_steps)) self.assertEqual(2, len(self.model.step_metadata)) self.assertTupleEqual(self.data[0], self.model.evaluation_steps[0]) self.assertDictEqual(self.metadata[0], self.model.step_metadata[0]) self.assertTupleEqual(self.data[1], self.model.evaluation_steps[1]) self.assertDictEqual(self.metadata[1], self.model.step_metadata[1]) tmp_file = tempfile.NamedTemporaryFile() filename = tmp_file.name self.model.dump_json(filename) with open(filename) as f: json_data = json.load(f) self.assertDictEqual( { "header": list(self.header), "1": { 'data': list(self.data[0]), 'metadata': self.metadata[0] }, "2": { 'data': list(self.data[1]), 'metadata': self.metadata[1] } }, json_data) self.model._export_enabled = False self.assertFalse(self.model.dump_json(None)) state_dict = { "header": self.header, "1": { 'data': self.data[0], 'metadata': self.metadata[0] }, "3": { 'data': self.data[1], 'metadata': self.metadata[1] } } with LogCapture() as capture: AnalysisModel().from_json(state_dict) capture.check(( "force_wfmanager.model.analysis_model", "WARNING", "Can't find a row with index 2. This index will " "be skipped in the AnalysisModel.", )) with self.subTest("Check deprecated formats"): # TODO: This test can be removed when issue #414 # is resolved state_dict = {"header": self.header, "1": list(self.data[0])} with LogCapture() as capture: model = AnalysisModel() model.from_json(state_dict) capture.check(( "force_wfmanager.model.analysis_model", "WARNING", "Project file format is deprecated and will" " be removed in version 0.7.0", )) self.assertDictEqual( { "header": self.header, 1: { "data": self.data[0], "metadata": {} } }, model.__getstate__()) def test_write_csv(self): self.model.from_json(self.state_dict) tmp_file = tempfile.NamedTemporaryFile() filename = tmp_file.name self.model.dump_csv(filename) with open(filename) as f: csv_data = f.read() self.assertEqual("a,b,c\n1,2,3\n4,5,6\n", csv_data) self.model._export_enabled = False self.assertFalse(self.model.dump_csv(None)) def test_write(self): with mock.patch.object(AnalysisModel, "dump_csv") as mock_csv: AnalysisModel().write("filename.csv") mock_csv.assert_called_with("filename.csv", mode="w") with mock.patch.object(AnalysisModel, "dump_json") as mock_json: AnalysisModel().write("filename.json") mock_json.assert_called_with("filename.json", mode="w") error = "AnalysisModel can only write to .json or .csv formats." with self.assertRaisesRegex(IOError, error): AnalysisModel().write("filename.format") def test_clear(self): self.model.notify(self.header) for entry, meta in zip(self.data, self.metadata): self.model.notify(meta, metadata=True) self.model.notify(entry) self.model.clear_steps() self.assertFalse(self.model.export_enabled) self.assertEqual([], self.model.evaluation_steps) self.assertEqual([], self.model.step_metadata) self.assertTupleEqual(self.model.header, self.header) self.model.notify(self.header) for entry in self.data: self.model.notify(entry) self.model.clear() self.assertFalse(self.model.export_enabled) self.assertEqual([], self.model.evaluation_steps) self.assertEqual([], self.model.step_metadata) self.assertTupleEqual(self.model.header, ()) def test_selected_step_indices(self): self.assertIsNone(self.model.selected_step_indices) self.model.notify(self.header) for entry in self.data: self.model.notify(entry) self.assertIsNone(self.model.selected_step_indices) self.model.selected_step_indices = [1] self.assertListEqual(self.model.selected_step_indices, [1]) self.model.selected_step_indices = [1, 2] self.assertListEqual(self.model.selected_step_indices, [1, 2]) error = ("Invalid value for selection index 3. " "It must be a positive Int less or equal to 1") with self.assertRaisesRegex(ValueError, error): self.model.selected_step_indices = [1, 3] error = ("Invalid value for selection index -1. " "It must be a positive Int less or equal to 1") with self.assertRaisesRegex(ValueError, error): self.model.selected_step_indices = [-1]
def setUp(self): self.model = AnalysisModel() self.pane = DataViewPane(analysis_model=self.model)
def setUp(self): self.model = AnalysisModel() self.pane = ResultsPane(analysis_model=self.model)
def test_notify(self): with mock.patch.object(AnalysisModel, "_add_header") as mock_header: model = AnalysisModel() model.notify(None) mock_header.assert_called_once() with mock.patch.object( AnalysisModel, "_add_header") as mock_header, mock.patch.object( AnalysisModel, "_add_metadata") as mock_metadata, mock.patch.object( AnalysisModel, "_add_data") as mock_data: model = AnalysisModel() model.notify(None) # This line is necessary because the header must be set # in order to add data to the model. model.header = ("", ) model.notify(None, metadata=True) model.notify(None) mock_header.assert_called_once() mock_metadata.assert_called_once() mock_data.assert_called_once()
def setUp(self): self.analysis_model = AnalysisModel() self.plot = ExampleCustomPlot(analysis_model=self.analysis_model)
def setUp(self): self.analysis_model = AnalysisModel() self.data_view = SamplingDataView(analysis_model=self.analysis_model)